A hot species for cool structures

July 21, 2011

A fungus that lives at extremely high temperatures could help understand structures within our own cells. Scientists at the European Molecular Biology Laboratory (EMBL) and Heidelberg University, both in Heidelberg, Germany, were the first to sequence and analyse the genome of a heat-loving fungus, and used that information to determine the long sought 3-dimensional structure of the inner ring of the nuclear pore. The study was published today in Cell.

The fungus Chaetomium thermophilum lives in soil, dung and compost heaps, at temperatures up to 60oC. This means its proteins - including some which are very similar to our own - have to be very stable, and the Heidelberg scientists saw this stability as an advantage.

"There are a number of structures that we couldn't study before, because they are too unstable in organisms that live at more moderate temperatures," explains Peer Bork, who led the genome analysis at EMBL. "Now with this heat-loving fungus, we can."

The scientists compared the fungus' genome and proteome to those of other eukaryotes - organisms whose cells have a nucleus - and identified the proteins that make up the innermost ring of the nuclear pore, a channel that controls what enters and exits a cell's nucleus. Having identified the relevant building blocks, the scientists determined the complex 3D structure of that inner ring for the first time.

"This work shows the power of interdisciplinary collaborations," says Ed Hurt, who led the structural and biochemical analyses at Heidelberg University: "the nuclear pore is an intricate biological puzzle, but by combining bioinformatics with biochemistry and structural biology, we were able to solve this piece of it for the first time."

The scientists have made C. thermophilum's genome and proteome publicly available, and are confident that these will prove valuable for studying other eukaryotic structures and their interactions, as well as general adaptations to life in hot places. Such knowledge could potentially lead to new biotechnology applications.
-end-
Published online in Cell on 22 July 2011.

European Molecular Biology Laboratory

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.