Nav: Home

A new key to understanding molecular evolution in space

July 21, 2016

Scientists at Hokkaido University have revealed temperature-dependent energy-state conversion of molecular hydrogen on ice surfaces, suggesting the need for a reconsideration of molecular evolution theory.

Molecular hydrogen, the most abundant element in space, is created when two hydrogen atoms bond on minute floating ice particles. It has two energy states: ortho and para, depending on the direction of proton spins. Ortho-hydrogen converts to para-hydrogen on extremely low temperature ice particles, though its mechanism remained unclear.

When molecular hydrogen is released from tiny ice particles in space, the particular state of its energy plays a key role in molecular evolution -- the process of generating a wide range of molecules over a long period of time in space.

In the study, the researchers developed a special system that could detect the ortho/para ratio of molecular hydrogen on artificial ice particles. The study discovered that the ratio of the ortho-to-para conversion rate (as time passed) was dramatically different in the relatively small temperature range of between -264C and -257C, thus, in a world first, unraveling the conversion mechanism. Ortho-hydrogen converts to para-hydrogen by releasing energy to the ice, in a temperature dependent manner.

Until now, the energy conversion rate was believed to be identical regardless of the temperature of ice particles -- a theory that has been scotched by the new research. The finding will likely prompt scientists to rebuild theories of molecular evolution, opening new horizons in studies of molecular formation and molecular evolution.
-end-


Hokkaido University

Related Hydrogen Articles:

Paving the way for hydrogen fuel cells
The hype around hydrogen fuel cells has died down, but scientists have continued to pursue new technologies that could enable such devices to gain a firmer foothold.
Keeping the hydrogen coming
A coating of molybdenum improves the efficiency of catalysts for producing hydrogen.
Hydrogen bonds directly detected for the first time
For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope.
Argon is not the 'dope' for metallic hydrogen
Hydrogen is both the simplest and the most-abundant element in the universe, so studying it can teach scientists about the essence of matter.
Metallic hydrogen, once theory, becomes reality
Nearly a century after it was theorized, Harvard scientists have succeeded in creating metallic hydrogen.
More Hydrogen News and Hydrogen Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.