Integration of novel materials with silicon chips makes new 'smart' devices possible

July 21, 2016

Researchers from North Carolina State University and the U.S. Army Research Office have developed a way to integrate novel functional materials onto a computer chip, allowing the creation of new smart devices and systems.

The novel functional materials are oxides, including several types of materials that, until now, could not be integrated onto silicon chips: multiferroic materials, which have both ferroelectric and ferromagnetic properties; topological insulators, which act as insulators in bulk but have conductive properties on their surface; and novel ferroelectric materials. These materials are thought to hold promise for applications including sensors, non-volatile computer memory and microelectromechanical systems, which are better known as MEMS.

"These novel oxides are normally grown on materials that are not compatible with computing devices," says Jay Narayan, the John C. Fan Distinguished Chair Professor of Materials Science and Engineering at NC State and co-author of a paper describing the work. "We are now able to integrate these materials onto a silicon chip, allowing us to incorporate their functions into electronic devices."

The approach developed by the researchers allows them to integrate the materials onto two platforms, both of which are compatible with silicon: a titanium nitride platform, for use with nitride-based electronics; and yttria-stabilized zirconia, for use with oxide-based electronics.

Specifically, the researchers developed a suite of thin films that serve as a buffer, connecting the silicon chip to the relevant novel materials. The exact combination of thin films varies, depending on which novel materials are being used.

For example, if using multiferroic materials, researchers use a combination of four different thin films: titanium nitride, magnesium oxide, strontium oxide and lanthanum strontium manganese oxide. But for topological insulators, they would use a combination of only two thin films: magnesium oxide and titanium nitride.

These thin film buffers align with the planes of the crystalline structure in the novel oxide materials, as well as with the planes of the underlying substrate - effectively serving as a communicating layer between the materials.

This approach, called thin film epitaxy, is based on the concept of domain-matching epitaxy, and was first proposed by Narayan in a 2003 paper.

"Integrating these novel materials onto silicon chips makes many things possible," Narayan says. "For example, this allows us to sense or collect data; to manipulate that data; and to calculate a response - all on one compact chip. This makes for faster, more efficient, lighter devices."

Another possible application, Narayan says, is the creation of LEDs on silicon chips, to make "smart lights." Currently, LEDs are made using sapphire substrates, which aren't directly compatible with computing devices.

"We've already patented this integration technology, and are currently looking for industry partners to license it," Narayan says.
-end-
The paper, "Multifunctional epitaxial systems on silicon substrates," is published online in the journal Applied Physics Reviews. Lead author of the paper is Srinivasa Singamaneni, a postdoctoral researcher at NC State who is also affiliated with the Army Research Office. The paper was co-authored by John Prater of the Army Research Office, who is also an adjunct professor of materials science and engineering at NC State. The work was supported by the Army Research Office under grant number W911NF-04-D-0003, and was done with technical support from NC State's Analytical Instrumentation Facility.

North Carolina State University

Related Topological Insulators Articles from Brightsurf:

Tunable THz radiation from 3D topological insulator
Wu's research group has been investigating a three-dimensional topological insulator of bismuth telluride (Bi2Te3) as a promising basis for an effective THz system.

Knotting semimetals in topological electrical circuits
Scientists created exotic states of matter using electrical circuit enhanced by machine-learning algorithm

Penn engineers create helical topological exciton-polaritons
Researchers at the University of Pennsylvania's School of Engineering and Applied Science are the first to create an even more exotic form of the exciton-polariton, one which has a defined quantum spin that is locked to its direction of motion.

Bridging the gap between the magnetic and electronic properties of topological insulators
Scientists at Tokyo Institute of Technology shed light on the relationship between the magnetic properties of topological insulators and their electronic band structure.

Topological superconducting phase protected by 1D local magnetic symmetries
Scientists from China and USA classified 1D gapped topological superconducting quantum wires with local magnetic symmetries (LMSs), in which the time-reversal symmetry is broken but its combinations with certain crystalline symmetries, such as MxT, C2zT, C4zT, and C6zT, are preserved.

Octupole corner state in a three-dimensional topological circuit
Higher-order topological insulators featuring quantized bulk polarizations and zero-dimensional corner states are attracting increasing interest due to their strong mode confinement.

Quantum simulation for 3D chiral topological phase
Professor Liu at PKU, Professor Du and Professor Wang at USTC build up a quantum simulator using nitrogen-vacancy center to investigate a three-dimensional (3D) chiral topological insulator which was not realized in solid state system, and demonstrate a complete study of both the bulk and surface topological physics by quantum quenches.

Photonic amorphous topological insulator
The current understanding of topological insulators and their classical wave analogues, such as photonic topological insulators, is mainly based on topological band theory.

Recent advances in 2D, 3D and higher-order topological photonics
A research team from South Korea and the USA has provided a comprehensive review covering the recent progress in topological photonics, a recently emerging branch of photonics.

Synthetic dimensions enable a new way to construct higher-order topological insulators
Higher-order topological insulators (HOTIs) are a new phase of matter predicted in 2017, involving complicated high-dimensional structures which show signature physical effects called ''corner modes.'' Now, scientists have proposed a recipe to construct such HOTIs and observe corner modes for photons in simpler, lower-dimensional structures by harnessing an emerging concept called ''synthetic dimensions.'' This construction allows flexible tuning of the topological behavior and opens avenues for even more exotic phases of photons in very high dimensions.

Read More: Topological Insulators News and Topological Insulators Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.