Nav: Home

Virtual development of real drugs

July 21, 2016

Inside the human body, the same drug can interact with multiple molecules. This phenomenon is known as 'polypharmacology' and, according to the interaction, a drug can cure a disease or cause side effects in the patient. It is therefore critical to create a drug that can hit the right molecular target, minimizing the risk of undesired molecular interactions. This selective interaction has been typically achieved through extensive lab experimentation: each new potential drug has to undergo a long series of trials to check its effectiveness and specificity. The process is time consuming and expensive.

A team of scientists, bringing together researchers from different Japanese institutions, has created an on-line resource that has the potential to revolutionize this situation. The Okinawa Institute of Science and Technology Graduate University (OIST), the System Biology Institute, the University of Tokyo and the RIKEN Center for Integrative Medicine closely collaborated to create 'systemsDock', a free on-line resource that allows the user to virtually check the effectiveness and specificity of a potential drug. OIST IT section provided key technical support for the project. Their work was published in Nucleic Acids Research.

"The process of creating a new drug can easily last for ten years, even when everything goes smoothly," Dr Kun-Yi Hsin, first author and member of the Integrated Open System Unit at OIST, explained. "Once you have a promising compound, it can still interact with multiple biological molecules. As a result, one can have adverse effects, and patients might be killed by side effects or -- because of the side effects -- patients cannot take the drug. A typical problem is cardiotoxicity."

systemsDock has been designed to virtually screen in an efficient and practical way the interactions between potential drugs and biological targets, and thus to identify promising drugs. The on-line resource checks how the potential drug can bind itself with the molecules inside the human body -- a process called 'docking'. In systemsDock, the researchers significantly improved the accuracy of the docking, as this is the critical aspect in the prediction of the interactions between the drug and the biological molecule.

Improved docking prediction is not the only feature of this new research tool. "There are other on-line resources that provide docking predictions," Hsin said. "But these type of web-sites typically let the user screen a series of drugs against a single biological target. systemsDock allows the users to screen many potential drugs and many biological targets at the same time."

Furthermore, systemsDock let the user explore the interaction between the drug and the biological molecule in the wider context of the biological system in which the interaction happens. "Systems biology is a relatively new field: the main idea behind it is the integration of different biological systems in a single description. So, when everything is put together, it is like a map." Hsin said. systemsDock uses these maps to perform a more comprehensive screening and gain a deeper understanding of the drug interaction with the biological system.

To create one of these maps is a complex enterprise, which can take up to three years if the subject of the map is a new aspect of biology. "All this time and effort should be used, and -- thanks to the collaboration with expert map curators from the System Biology Institute - we provide an exceptional tool to do that," Hsin said. Maps focused on specific diseases, like Alzheimer's, Parkinson's and Influenza, have already been created and can be used in systemsDock.

The results of the screening process are complex, because checking multiple drugs and multiple biological targets generates many interactions. But these interactions are easy to monitor, as systemsDock is capable of navigating the maps, changing the colours of the connections among the different molecules and drugs according to their type of interaction. This feature makes it easy - even for scientists with a limited technical knowledge -- to use the research tool, which is also able to show the 3D structure of the substances involved.

"systemsDock can provide promising compound to the research, reducing the amount of time and resources needed to develop a drug," Hsin said. "It can also reduce the probability of error, and this is beneficial for the whole drug-development process."
-end-


Okinawa Institute of Science and Technology (OIST) Graduate University

Related Biology Articles:

Cell biology: Compartments and complexity
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists have taken a closer look at the subcellular distribution of proteins and metabolic intermediates in a model plant.
Cell biology: The complexity of division by two
Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have identified a novel protein that plays a crucial role in the formation of the mitotic spindle, which is essential for correct segregation of a full set of chromosomes to each daughter cell during cell division.
Cell biology: Dynamics of microtubules
Filamentous polymers called microtubules play vital roles in chromosome segregation and molecular transport.
The biology of color
Scientists are on a threshold of a new era of color science with regard to animals, according to a comprehensive review of the field by a multidisciplinary team of researchers led by professor Tim Caro at UC Davis.
Kinky biology
How and why proteins fold is a problem that has implications for protein design and therapeutics.
A new tool to decipher evolutionary biology
A new bioinformatics tool to compare genome data has been developed by teams from the Max F.
Biology's need for speed tolerates a few mistakes
In balancing speed and accuracy to duplicate DNA and produce proteins, Rice University researchers find evolution determined that speed is favored much more.
How to color a lizard: From biology to mathematics
Skin color patterns in animals arise from microscopic interactions among colored cells that obey equations discovered by Alan Turing.
Behavioral biology: Ripeness is all
In contrast to other members of the Drosophila family, the spotted-wing fly D. suzukii deposits its eggs in ripe fruits.
A systems biology perspective on molecular cytogenetics
Professor Henry Heng's team, from the medical school at Wayne State University, has published a perspective article titled A Systems Biology Perspective on Molecular Cytogenetics to address the issue.
More Biology News and Biology Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.