Nav: Home

Antibiotics weaken Alzheimer's disease progression through changes in the gut microbiome

July 21, 2016

Long-term treatment with broad spectrum antibiotics decreased levels of amyloid plaques, a hallmark of Alzheimer's disease, and activated inflammatory microglial cells in the brains of mice in a new study by neuroscientists from the University of Chicago.

The study, published July 21, 2016, in Scientific Reports, also showed significant changes in the gut microbiome after antibiotic treatment, suggesting the composition and diversity of bacteria in the gut play an important role in regulating immune system activity that impacts progression of Alzheimer's disease.

"We're exploring very new territory in how the gut influences brain health," said Sangram Sisodia, PhD, Thomas Reynolds Sr. Family Professor of Neurosciences at the University of Chicago and senior author of the study. "This is an area that people who work with neurodegenerative diseases are going to be increasingly interested in, because it could have an influence down the road on treatments."

Two of the key features of Alzheimer's disease are the development of amyloidosis, accumulation of amyloid-ß (Aß) peptides in the brain, and inflammation of the microglia, brain cells that perform immune system functions in the central nervous system. Buildup of Aß into plaques plays a central role in the onset of Alzheimer's, while the severity of neuro-inflammation is believed to influence the rate of cognitive decline from the disease.

For this study, Sisodia and his team administered high doses of broad-spectrum antibiotics to mice over five to six months. At the end of this period, genetic analysis of gut bacteria from the antibiotic-treated mice showed that while the total mass of microbes present was roughly the same as in controls, the diversity of the community changed dramatically. The antibiotic-treated mice also showed more than a two-fold decrease in Aß plaques compared to controls, and a significant elevation in the inflammatory state of microglia in the brain. Levels of important signaling chemicals circulating in the blood were also elevated in the treated mice.

While the mechanisms linking these changes is unclear, the study points to the potential in further research on the gut microbiome's influence on the brain and nervous system.

"We don't propose that a long-term course of antibiotics is going to be a treatment--that's just absurd for a whole number of reasons," said Myles Minter, PhD, a postdoctoral scholar in the Department of Neurobiology at UChicago and lead author of the study. "But what this study does is allow us to explore further, now that we're clearly changing the gut microbial population and have new bugs that are more prevalent in mice with altered amyloid deposition after antibiotics."

The study is the result of one the first collaborations from the Microbiome Center, a joint effort by the University of Chicago, the Marine Biological Laboratory and Argonne National Laboratory to support scientists at all three institutions who are developing new applications and tools to understand and harness the capabilities of microbial systems across different fields. Sisodia, Minter and their team worked with Eugene B. Chang, Martin Boyer Professor of Medicine at UChicago, and Vanessa Leone, PhD, a postdoctoral scholar in Chang's lab, to analyze the gut microbes of the mice in this study.

Minter said the collaboration was enabling, and highlighted the cross-disciplinary thinking necessary to tackle a seemingly intractable disease like Alzheimer's. "Once you put ideas together from different fields that have largely long been believed to be segregated from one another, the possibilities are really amazing," he said.

Sisodia cautioned that while the current study opens new possibilities for understanding the role of the gut microbiome in Alzheimer's disease, it's just a beginning step.

"There's probably not going to be a cure for Alzheimer's disease for several generations, because we know there are changes occurring in the brain and central nervous system 15 to 20 years before clinical onset," he said. "We have to find ways to intervene when a patient starts showing clinical signs, and if we learn how changes in gut bacteria affect onset or progression, or how the molecules they produce interact with the nervous system, we could use that to create a new kind of personalized medicine."
-end-
The study, "Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer's disease," was supported by the Cure Alzheimer's Fund and the National Institute of Diabetes and Digestive and Kidney Diseases. Additional authors include Daina Ringus, Xiaoqiong Zhang, Paul Oyler-Castrillo, and Mark Musch from the University of Chicago; Can Zhang, Joseph Ward, and Rudolph Tanzi from Massachusetts General Hospital; and Fan Liao and David Holtzman from Washington University.

About the University of Chicago Medicine

The University of Chicago Medicine & Biological Sciences is one of the nation's leading academic medical institutions. It comprises the Pritzker School of Medicine, a top 10 medical school in the nation; the University of Chicago Biomedical Sciences Division; and the University of Chicago Medical Center, which recently opened the Center for Care and Discovery, a $700 million specialty medical facility. Twelve Nobel Prize winners in physiology or medicine have been affiliated with the University of Chicago Medicine.

Visit our research blog at sciencelife.uchospitals.edu and our newsroom at uchospitals.edu/news.

Twitter @UChicagoMed, @ScienceLife

Facebook.com/UChicagoMed

University of Chicago Medical Center

Related Antibiotics Articles:

Antibiotics: City dwellers and children take the most
City dwellers take more antibiotics than people in rural areas; children and the elderly use them more often than middle-aged people; the use of antibiotics decreases as education increases, but only in rich countries: These are three of the more striking trends identified by researchers of the NRW Forschungskolleg ''One Health and Urban Transformation'' at the University of Bonn.
Metals could be the link to new antibiotics
Compounds containing metals could hold the key to the next generation of antibiotics to combat the growing threat of global antibiotic resistance.
Antibiotics from the sea
The team led by Prof. Christian Jogler of Friedrich Schiller University, Jena, has succeeded in cultivating several dozen marine bacteria in the laboratory -- bacteria that had previously been paid little attention.
Antibiotics not necessary for most toothaches, according to new ADA guideline
The American Dental Association (ADA) announced today a new guideline indicating that in most cases, antibiotics are not recommended for toothaches.
Antibiotics with novel mechanism of action discovered
Many life-threatening bacteria are becoming increasingly resistant to existing antibiotics.
Resistance can spread even without the use of antibiotics
Antibiotic resistance does not spread only where and when antibiotics are used in large quantities, ETH researchers conclude from laboratory experiments.
Selective antibiotics following nature's example
Chemists from Konstanz develop selective agents to combat infectious diseases -- based on the structures of natural products
Antibiotics can inhibit skin lymphoma
New research from the LEO Foundation Skin Immunology Research Center at the University of Copenhagen shows, surprisingly, that antibiotics inhibit cancer in the skin in patients with rare type of lymphoma.
Antibiotics may treat endometriosis
Researchers at Washington University School of Medicine in St. Louis have found that treating mice with an antibiotic reduces the size of lesions caused by endometriosis.
How antibiotics help spread resistance
Bacteria can become insensitive to antibiotics by picking up resistance genes from the environment.
More Antibiotics News and Antibiotics Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.