Genetic testing could improve screening for osteoporosis

July 21, 2020

An international team of scientists has developed a novel genetic measure that could dramatically improve how doctors assess the risk of sustaining a fracture due to osteoporosis or fragility

A full genome profile can be generated for approximately £35-40 per patient, a cost that is comparable to or lower than the cost of an X-ray to measure bone mineral density

By generating a single genomic profile, researchers can also identify multiple risk factors for diseases like cancer, cardiovascular disease and osteoporosis

Embedding genetic testing into routine clinical practice could improve the efficiency and cut costs of screening for common diseases such as osteoporosis, according to new research.

An international team of scientists, including researchers from the University of Sheffield, has developed a novel genetic measure that could dramatically improve how doctors assess the risk of sustaining a fracture due to osteoporosis or fragility.

The new study published in the journal PLOS Medicine demonstrates how more extensive applications of genomic screening might be used to improve the delivery of healthcare.

Researchers tested whether a risk score gathered from information across a panel of over 20,000 genes could be used as a substitute for a measure of bone strength called heel quantitative ultrasound speed of sound (SOS).

The risk score, termed gSOS, was developed using the UK Biobank which provided SOS measurements for 341,449 individuals. The international research team then applied gSOS alongside the Sheffield-developed FRAX tool, which evaluates the fracture risk of patients based on individual models that integrate clinical risk factors as well as bone mineral density, to determine its impact on the need for actual measurements of bone strength which are usually carried out in hospital by X-ray.

The study estimated that the application of gSOS could reduce the number of FRAX tests and bone mineral density-based FRAX tests by 37 per cent and 41 per cent, respectively, while maintaining a high sensitivity and specificity to identify individuals who should be recommended for intervention.

A full genome profile can be generated for approximately £35-40 per patient, a cost that is comparable to or lower than the cost of an X-ray to measure bone mineral density.

Eugene McCloskey, Professor in Adult Bone Diseases at the University of Sheffield and Director of the Medical Research Council Versus Arthritis Centre for Integrated Research in Musculoskeletal Ageing, said: "Fractures can have severe consequences, including hospitalisation, prolonged rehabilitation, loss of independence and even death.

"As the population ages, the urgency of improving preventive measures becomes all the more intense. Bone strength, a key component underlying fracture risk, is highly heritable (up to 85 per cent determined by our genes), and is therefore a strong candidate for assessment through genetic screening.

"While the impact of this research is not immediate as it requires each individual's genome to be available for calculation of their gSOS, it is of great importance for the future of medical practice."

Lead researcher, Dr Brent Richards, a geneticist at the Lady Davis Institute's Centre for Clinical Epidemiology and Professor of Medicine, Human Genetics, and Epidemiology and Biostatistics at McGill University, said: "By generating a single genomic profile, we can identify multiple risk factors for diseases like cancer, cardiovascular disease and osteoporosis.

"Importantly, we could reduce the number of specific tests to which we need to subject our patients if we knew whether they have the genetic markers predisposing them to particular conditions.

"A simple investment in genotyping would give us a more refined understanding of who should be screened, allowing us to concentrate on individuals at higher risk."
-end-
Notes to Editors

For more information or to arrange an interview with Professor Eugene McCloskey please contact: Amy Huxtable, Media Relations Officer, University of Sheffield, 0114 222 9859, 07568116781, a.l.huxtable@sheffield.ac.uk

To view the paper in full please visit: https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1003152

University of Sheffield

Related Cardiovascular Disease Articles from Brightsurf:

Changes by income level in cardiovascular disease in US
Researchers examined changes in how common cardiovascular disease was in the highest-income earners compared with the rest of the population in the United States between 1999 and 2016.

Fighting cardiovascular disease with acne drug
Researchers from the European Molecular Biology Laboratory (EMBL) in Heidelberg and Stanford University have found the cause of dilated cardiomyopathy - a leading cause of heart failure - and identified a potential treatment for it: a drug already used to treat acne.

A talk with your GP may prevent cardiovascular disease
Having a general practitioner (GP) who is trained in motivational interviewing may reduce your risk of getting cardiovascular disease.

Dilemma of COVID-19, aging and cardiovascular disease
Whether individuals should continue to take angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in the context of coronavirus disease 2019 (COVID-19) is discussed in this article.

Air pollution linked to dementia and cardiovascular disease
People continuously exposed to air pollution are at increased risk of dementia, especially if they also suffer from cardiovascular diseases, according to a study at Karolinska Institutet in Sweden published in the journal JAMA Neurology.

New insights into the effect of aging on cardiovascular disease
Aging adults are more likely to have - and die from - cardiovascular disease than their younger counterparts.

Premature death from cardiovascular disease
National data were used to examine changes from 2000 to 2015 in premature death (ages 25 to 64) from cardiovascular disease in the United States.

Ultrasound: The potential power for cardiovascular disease therapy
In the current issue of Cardiovascular Innovations and Applications volume 4, issue 2, pp.

Despite the ACA, millions of Americans with cardiovascular disease still can't get care
Cardiovascular disease (CVD) is the leading cause of death for Americans, yet millions with CVD or cardiovascular risk factors (CVRF) still can't access the care they need, even years after the implementation of the Affordable Care Act (ACA).

Excess weight and body fat cause cardiovascular disease
In the first Mendelian randomization study to look at this, researchers have found evidence that excess weight and body fat cause a range of heart and blood vessel diseases (rather than just being associated with it).

Read More: Cardiovascular Disease News and Cardiovascular Disease Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.