Valley-Hall nanoscale lasers

July 21, 2020

Topological photonics underpins a promising paradigm for robust light manipulation and smart design of optical devices with improved reliability and advanced functionalities governed by the nontrivial band topology. Nanostructures made of high-index dielectric materials with judiciously designed resonant elements and lattice arrangements show special promise for implementation of topological order for light at the nanoscale and optical on-chip applications. High-index dielectrics such as III-V semiconductors that can contain strong optical gain further enhanced by topological field localization form a promising platform for active topological nanophotonics.

In a new paper published in Light Science & Application, a team of scientists, led by Yuri Kivshar from the Australian National University and Hong-Gyu Park from the Korea University, and co-workers have implemented nanophotonic cavities in a nanopatterned InGaAsP membrane incorporating III-V semiconductor quantum wells. The nanocavities exhibit a photonic analogue of valley-Hall effect. Researchers demonstrated room-temperature low-threshold lasing from a cavity mode hosted within the topological bandgap of the structure.

The SEM image of the fabricated structure and experimental results are shown in Figure. The cavity is based on the closed valley-Hall domain wall created by inversion of staggering nanoholes sizes in a bipartite honeycomb lattice. In the topological bandgap frequency range, the cavity supports a quantized spectrum of modes confined to the domain wall. The images show real-space emission profiles below and above the threshold.

The scientists explain:

"In experiment, we first observe spontaneous emission from the cavity. The emission profile shows the enhancement along the entire perimeter of the triangular cavity associated with edge states. When increasing a pump power, we observe a threshold transition to lasing with a narrow-linewidth where the emission gets confined at the three corners."

When two spots are isolated, coherence of the emission is confirmed by interference fringes observed in the measured far-field radiation patterns. An isolated corner emits a donut-shaped beam carrying a singularity. These findings make a step topologically controlled ultrathin light sources with nontrivial radiation characteristics. The researchers forecast:

"The proposed all-dielectric platform holds promise for the versatile design of active topological metasurfaces with integrated light sources. Such topological nanocavities has vast potential for advances in nonlinear nanophotonics, low-power nanolasing and cavity quantum electrodynamics".
-end-


Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, Chinese Academy

Related Nanoscale Articles from Brightsurf:

Nanoscale machines convert light into work
Researchers have developed a tiny new machine that converts laser light into work.

Discovery will allow more sophisticated work at nanoscale
The movement of fluids through small capillaries and channels is crucial for processes ranging from blood flow through the brain to power generation and electronic cooling systems, but that movement often stops when the channel is smaller than 10 nanometers.

Valley-Hall nanoscale lasers
Topological photonics allows the creation of new states of light.

Dynamics of DNA replication revealed at the nanoscale
Using super-resolution technology a University of Technology Sydney led team has directly visualised the process of DNA replication in single human cells.

House cleaning on the nanoscale
A team of scientists at Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) has developed a novel mechanical cleaning method for surfaces on the nanoscale.

As electronics shrink to nanoscale, will they still be good as gold?
As circuit interconnects shrink to nanoscale, will the pressure caused by thermal expansion when current flows through wires cause gold to behave more like a liquid than a solid -- making nanoelectronics unreliable?

A joint venture at the nanoscale
Scientists at Argonne National Laboratory report fabricating and testing a superconducting nanowire device applicable to high-speed photon counting.

Bending diamond at the nanoscale
A team of Australian scientists has discovered diamond can be bent and deformed, at the nanoscale at least.

Creating a nanoscale on-off switch for heat
Researchers create a polymer thermal regulator that can quickly transform from a conductor to an insulator, and back again.

Magnetic tuning at the nanoscale
Physicists from the German research center Helmholtz-Zentrum Dresden-Rossendorf (HZDR) are working to produce engineered magnetic nanostructures and to tailor material properties at the nanoscale.

Read More: Nanoscale News and Nanoscale Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.