Leukemia drug shows the potential to treat aggressive pediatric brain câncer

July 21, 2020

By André Julião | Agência FAPESP – Researchers affiliated with the University of São Paulo’s Ribeirão Preto Medical School (FMRP-USP) in Brazil have demonstrated the potential of a leukemia drug, arsenic trioxide, to treat medulloblastoma, a type of brain cancer most common in children. When they tested arsenic trioxide on cells taken from one of the most aggressive subgroups of this type of tumor, they obtained promising results in terms of tumor cell death. The drug also made the tumor cells more sensitive to radiation therapy.

The study, published in Scientific Reports, was supported by FAPESP.

“Twelve medulloblastoma subgroups are currently recognized according to their molecular characteristics, which also indicate the prognosis. One of the subgroups with the worst prognosis is known as SHH. This tumor has a somatic mutation in gene TP53, and it’s treated with chemical and radiation therapy,” said Paulo Henrique dos Santos Klinger, first author of the article, written as part of his master’s research at FMRP-USP, and supported with a scholarship from the National Council for Scientific and Technological Development (CNPq).

The study was part of the project Interactions between emerging therapeutic targets and developmental pathways associated with tumorigenesis: emphasis on pediatric malignancies, which is led by Luiz Gonzaga Tone, a professor at FMRP-USP.

“The project focuses on an in-depth investigation of dysregulation of the signaling pathways that control normal embryonic development and its link to the onset and progression of pediatric cancer,” Tone said.

Radiotherapy can have severe adverse effects on a child’s brain, causing cognitive, endocrine and motor problems. Hence, the importance of developing therapeutic strategies that reduce or eliminate the need for radiation is important.

In the study, the researchers selected different SHH tumor cell lines and tested different doses of arsenic trioxide, a medication used to treat acute myeloid leukemia. They also tested different doses of radiation in conjunction with the administration of the drug.

On its own, arsenic trioxide proved capable of killing tumor cells and preventing the formation of new tumor cell colonies. The effects were enhanced when the drug was combined with radiation therapy. The drug was not found to be significantly toxic when applied to healthy cells.

Moreover, arsenic trioxide alone could be used to treat pediatric medulloblastoma patients as old as three years, possibly in conjunction with the chemotherapy drugs typically used to treat this type of cancer. Children in this age group with brain cancer cannot be treated with radiation therapy since it may cause irreversible damage to the central nervous system.

Mutation

The drug was chosen because it is a well-known blocker of the SHH signaling pathway in leukemia. The SHH pathway is essential to human embryonic development and is deactivated when embryogenesis is complete. If the pathway is reactivated for some reason, which are currently unknown, then cancer can develop, including some types of skin cancer and various types of leukemia and medulloblastoma.

“Another advantage of arsenic trioxide is its capacity to cross the blood-brain barrier, which protects the central nervous system from circulating toxins or pathogens. Previous studies showed this penetration to be reasonable in medulloblastoma,” said Elvis Terci Valera, last author of the published paper. Valera is an attending physician at the teaching hospital (Hospital das Clínicas) operated by FMRP-USP and a professor at the institution’s child health program.

The prognosis for SHH-type medulloblastomas is typically intermediate, with 50% of patients responding well to treatment. However, the prognosis is worse when a somatic mutation occurs in TP53 because this gene plays a key role in cell division control via the SHH pathway and can counteract alterations that can lead to cancer.

“The germline mutation of this gene points to Li-Fraumeni syndrome, characterized by several clinical factors but generally involving the loss of function of TP53 and increasing the likelihood of various types of tumors,” Klinger said.

Li-Fraumeni syndrome (LFS) confers an inherited familial predisposition to a range of cancers. In children, it entails an augmented risk of the occurrence of medulloblastomas, especially those of the SHH subgroup.

The researchers now plan to test the drug in animal models to determine whether the results are the same as those of the cell experiments. If they are the same, then the treatment may subsequently tested in humans.
-end-
About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at http://www.fapesp.br/en and visit FAPESP news agency at http://www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe.

Fundação de Amparo à Pesquisa do Estado de São Paulo

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.