Key compound of ozone destruction detected

July 22, 2010

For the first time, KIT scientists have successfully measured in the ozone layer the chlorine compound ClOOCl which plays an important role in stratospheric ozone depletion. The doubts in the established models of polar ozone chemistry expressed by American researchers based on laboratory measurements are disproved by these new atmospheric observations. The established role played by chlorine compounds in atmospheric ozone chemistry is in fact confirmed by KIT's atmospheric measurements.

The ozone hole above the Antarctic and the destructive role of chlorofluorocarbons (CFC) and their decomposition products have become a synonym of both global environmental problems and their solution by concerted agreements worldwide. Scientific fundamental research into ozone chemistry of the atmosphere was the basis of international agreements, such as the Montreal Protocol of 1987, which has put limits on CFC production. The success of the political implementation of these scientific findings is reflected by the fact that the chlorine content of the atmosphere and, hence, the ozone destruction potential recently started to decrease slowly.

For the first time, scientists from the Institute for Meteorology and Climate Research (IMK) have detected using atmospheric infrared measurements the important, but rather unstable chlorine monoxide dimer (ClOOCl) that plays a central role in stratospheric ozone destruction at the end of the Arctic winter. During the polar winter after sunrise, ClOOCl rapidly forms atomic chlorine which may catalytically decompose ozone. The extent of ClOOCl decay caused by the short-wave sunlight determines the extent of stratospheric polar ozone decomposition.

However, understanding of the processes involved in ozone-destroying atmospheric chlorine chemistry was questioned by laboratory measurements of American scientists (F. Pope et al., J. Phys. Chem. A, 111, 4322-4332, 2007). According to them, the decay of ClOOCl caused by sunlight is smaller than the decay calculated by other working groups. This would also imply weaker ozone decomposition. However, stratospheric chemistry models were found to significantly underestimate the ozone decomposition using these laboratory measurements. Hence, understanding of the ozone destruction processes in general was questioned.

"The atmosphere measurements made by KIT scientists above Northern Scandinavia with the balloon-borne infrared spectrometer MIPAS-B at heights of more than 20 kilometers clearly disprove the doubts of the American scientists and confirm the existing models of polar ozone chemistry," underlines Dr. Gerald Wetzel, member of the IMK staff. "Measurement and evaluation of balloon spectra require a very close cooperation of engineers and scientists, without which these important results would not have been possible."
Reference: "First remote sensing measurements of ClOOCl along with ClO and ClONO2 in activated and deactivated Arctic vortex conditions using new ClOOCl IR absorption cross sections", G. Wetzel et al., Atmospheric Chemistry and Physics, 10, 931-945, 2010.

Karlsruhe Institute of Technology (KIT) is a public corporation and state institution of Baden-Württemberg, Germany. It fulfills the mission of a university and the mission of a national research center of the Helmholtz Association. KIT focuses on a knowledge triangle that links the tasks of research, teaching, and innovation.

Helmholtz Association

Related Ozone Articles from Brightsurf:

Investigating the causes of the ozone levels in the Valderejo Nature Reserve
The UPV/EHU's Atmospheric Research Group (GIA) has presented a database comprising over 60 volatile organic compounds (VOC) measured continuously over the last ten years in the Valderejo Nature Reserve (Álava, Basque Country).

FSU Research: Despite less ozone pollution, not all plants benefit
Policies and new technologies have reduced emissions of precursor gases that lead to ozone air pollution, but despite those improvements, the amount of ozone that plants are taking in has not followed the same trend, according to Florida State University researchers.

Iodine may slow ozone layer recovery
Air pollution and iodine from the ocean contribute to damage of Earth's ozone layer.

Ozone threat from climate change
We know the recent extreme heat is something that we can expect more of as a result of increasing temperatures due to climate change.

Super volcanic eruptions interrupt ozone recovery
Strong volcanic eruptions, especially when a super volcano erupts, will have a strong impact on ozone, and might interrupt the ozone recovery processes.

How severe drought influences ozone pollution
From 2011 to 2015, California experienced its worst drought on record, with a parching combination of high temperatures and low precipitation.

New threat to ozone recovery
A new MIT study, published in Nature Geoscience, identifies another threat to the ozone layer's recovery: chloroform -- a colorless, sweet-smelling compound that is primarily used in the manufacturing of products such as Teflon and various refrigerants.

Ozone hole modest despite optimum conditions for ozone depletion
The ozone hole that forms in the upper atmosphere over Antarctica each September was slightly above average size in 2018, NOAA and NASA scientists reported today.

Increased UV from ozone depletion sterilizes trees
UC Berkeley paleobotanists put dwarf, bonsai pine trees in growth chambers and subjected them to up to 13 times the UV-B radiation Earth experiences today, simulating conditions that likely existed 252 million years ago during the planet's worst mass extinction.

Ozone at lower latitudes is not recovering, despite Antarctic ozone hole healing
The ozone layer -- which protects us from harmful ultraviolet radiation -- is recovering at the poles, but unexpected decreases in part of the atmosphere may be preventing recovery at lower latitudes.

Read More: Ozone News and Ozone Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to