Nav: Home

Zebrafish reveal drugs that may improve bone marrow transplant

July 22, 2015

Using large-scale zebrafish drug-screening models, researchers at Boston Children's Hospital have identified a potent group of chemicals that helps bone marrow transplants engraft or "take." The findings, published in the July 23 issue of Nature, could lead to human trials in patients with cancer and blood disorders within a year or two, says senior investigator Leonard Zon, MD.

The compounds, known as epoxyeicosatrienoic acids, or EETs, boosted stem cell engraftment in both zebrafish and mice and could make human bone marrow transplant more efficient. Better engraftment could also allow umbilical cord blood to be used as an alternative to marrow as a source of blood stem cells, greatly increasing a patient's chances of finding a matched donor and enhancing safety.

"Ninety percent of cord blood units can't be used because they're too small," explains Zon, who directs the Stem Cell Research Program at Boston Children's. "If you add these chemicals, you might be able to use more units. Being able to get engraftment allows you to pick a smaller cord blood sample that might be a better match."

EETs are fats that appear to work by stimulating cell migration. They were among the top hits in a screen of 500 known compounds conducted in Boston Children's newly upgraded Karp Aquatics Facility. While zebrafish have previously led Zon's team to compounds that boost blood stem cell number, such as prostaglandin (currently in several clinical trials under the name ProHema), the new drug screen specifically tested the stem cells' transplantability and engraftment.

Red fish, green fish

The screen was done in a lab-created strain of zebrafish called Casper. Because Casper is see-through, Zon and colleagues could visually compare engraftment of transplanted blood stem cells chemically tagged to glow green or red--in what they've dubbed the "Dr. Seuss experiment."

Led by co-first authors Pulin Li, PhD, Jamie Lahvic, and Vera Binder, MD, the researchers first used tagging to color the fishes' marrow either red or green, then removed blood stem cells for transplantation. The green cells were incubated with various chemicals, while the red cells were left untreated. Next, the researchers injected a mixture of green and red marrow cells into other groups of zebrafish (10 fish per test chemical). The team then visually tracked the cells' activity in the transplant recipients and measured the green:red ratio.

"We call this a competitive transplant model because we can literally compete a green stem cell against a red stem cell and see what wins," says Zon. "The expectation was that if chemical didn't increase engraftment, all the fish would be equal parts red and green. But if it was effective, green marrow would predominate."

That was the case for green marrow incubated with EETs, a finding that held up over thousands of marrow transplants. "In a mouse system, this experiment would cost $3 million," notes Zon. "In fish, it cost about $150,000."

In a smaller-scale set of mouse experiments, the team confirmed EETs' efficacy in promoting homing and engraftment of transplanted blood stem cells in mammals.

Although EETs are chemical cousins of prostaglandin (both are made from arachidonic acid, and both are made during inflammation), EETs work in a different way, by activating a pathway known as PI3K. EETs also enhanced PI3K activity in human blood vessel cells in a dish.

After more studies in human cells to tease out how EETs work, Zon hopes to begin clinical trials of EETs within the next two years, likely in the setting of cord blood transplant. The lab is also investigating its other top hits from the zebrafish screen.

"Every new pathway that we find has the chance of making stem cell engraftment and migration even better," says Zon. "I think we'll end up being able to manipulate this process."
-end-
Supporters of the study include the Howard Hughes Medical Institute, the National Institutes of Health (NIH 1R01HL04880, Z01 ES025034, NIH-P50-NS40828, NIH-P30-HD18655), the National Cancer Institute (ROCA148633-01A5), DFG and the Care-for-Rare Foundation. Zon is a founder and stockholder of Fate, Inc. and a scientific advisor for Stemgent.

Boston Children's Hospital is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 1,100 scientists, including 7 members of the National Academy of Sciences, 11 members of the Institute of Medicine and 9 members of the Howard Hughes Medical Institute comprise Boston Children's research community. Founded as a 20-bed hospital, Boston Children's today is a 397-bed comprehensive center for pediatric and adolescent health care and the primary pediatric teaching affiliate of Harvard Medical School. For more, visit vector.childrenshospital.org and follow us on Twitter (@BostonChildrens@BCH_Innovation), Facebook and YouTube.

Boston Children's Hospital

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".