Designer protein gives new hope to scientists studying Alzheimer's disease

July 22, 2016

A new protein which will help scientists to understand why nerve cells die in people with Alzheimer's disease has been designed in a University of Sussex laboratory.

In people with Alzheimer's, Amyloid-beta (Abeta) proteins stick together to make amyloid fibrils which form clumps between neurons in the brain. It's believed the build-up of these clumps causes brain cells to die, leading to the cognitive decline in patients suffering from the disease.

It is not known why this particular protein's "stickiness" causes cells to die and scientists have been unable to properly test whether the sticky clumps of Abeta proteins have different effects, compared with individual proteins that are not stuck together.

Now University of Sussex scientists have created a new protein which closely resembles the Abeta protein in size and shape, but contains two different amino acids (the building blocks that proteins are made up of). These changes mean that the new protein does not form amyloid fibres or sticky clumps, and, unlike Abeta, is not toxic to nerve cells, according to a study, published today (22 July) in the open access Nature Publishing Group journal, Scientific Reports.

The new protein will be an essential laboratory tool for researchers working to understand the causes and role of Abeta plays in Alzheimer's disease. The scientists who designed it are now working closely with the Sussex Innovation Centre, the University's business-incubation hub, to research commercial opportunities for the protein.

Dr Karen Marshall, who lead on the study said: "Understanding how the brain protein Abeta causes nerve cell death in Alzheimer's patients is key if we are to find a cure for this disease.

"Our study clearly shows that the aggregation of Abeta into bigger species is critical in its ability to kill cells. Stopping the protein aggregating in people with Alzheimer's could slow down the progression symptoms of the disease. We hope to work towards finding a strategy to do this in the lab and reverse the damaging effects of toxic Abeta."

Professor Louise Serpell, a senior author on the study and co-director of the University of Sussex's Dementia Research Group, said: "This is a really exciting new tool that will contribute to research to uncover the causes for Alzheimer's disease and enable tangible progress to be made towards finding targets for therapy."

Peter Lane, Innovation Support Manager at The Sussex Innovation Centre said: "This is an really exciting development. The Centre is thrilled to be working alongside Professor Serpell to make sure the benefits offered by this new laboratory tool are made widely available to the Alzheimer's research community in the very near future."
-end-
The study 'A critical role for the self-assembly of Amyloid-β1-42 in neurodegeneration' has been published in the open access Nature Publishing Group journal, Scientific Reports.

MEDIA RELATIONS

Communications and External Affairs | University of Sussex | Sussex House | Brighton BN1 9RH | United Kingdom
T +44 (0)1273 678888 | press@sussex.ac.uk
http://www.sussex.ac.uk/newsandevents

Notes to Editors:

The University of Sussex's School of Life Sciences is one of the largest academic schools at the University of Sussex. With 96 per cent of its research rated as world leading, internationally excellent or internationally recognised (REF 2014), it is among the leading research hubs for the biological sciences in the UK. The School is home to a number of prestigious research centres including the Genome Damage and Stability Centre (GDSC) and the Sussex Drug Discovery Centre, where academics work with industry to translate scientific advances into real-world benefits for patients. Nearly 350 undergraduate and postgraduate students (including 50 PhDs) are admitted each year onto a broad range of degree courses in biological, biomedical and chemical sciences.

Sussex Innovation Centre is based at the University's Falmer campus, it offers flexible, professional office space and a range of in-house support services to assist start-up businesses and university enterprises during the early years of their operation. For more information please visit http://www.sinc.co.uk/centre-locations

University of Sussex

Related Nerve Cells Articles from Brightsurf:

Nerve cells let others "listen in"
How many ''listeners'' a nerve cell has in the brain is strictly regulated.

Nerve cells with energy saving program
Thanks to a metabolic adjustment, the cells can remain functional despite damage to the mitochondria.

Why developing nerve cells can take a wrong turn
Loss of ubiquitin-conjugating enzyme leads to impediment in growth of nerve cells / Link found between cellular machineries of protein degradation and regulation of the epigenetic landscape in human embryonic stem cells

Unique fingerprint: What makes nerve cells unmistakable?
Protein variations that result from the process of alternative splicing control the identity and function of nerve cells in the brain.

Ragweed compounds could protect nerve cells from Alzheimer's
As spring arrives in the northern hemisphere, many people are cursing ragweed, a primary culprit in seasonal allergies.

Fooling nerve cells into acting normal
In a new study, scientists at the University of Missouri have discovered that a neuron's own electrical signal, or voltage, can indicate whether the neuron is functioning normally.

How nerve cells control misfolded proteins
Researchers have identified a protein complex that marks misfolded proteins, stops them from interacting with other proteins in the cell and directs them towards disposal.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Research confirms nerve cells made from skin cells are a valid lab model for studying disease
Researchers from the Salk Institute, along with collaborators at Stanford University and Baylor College of Medicine, have shown that cells from mice that have been induced to grow into nerve cells using a previously published method have molecular signatures matching neurons that developed naturally in the brain.

Bees can count with just four nerve cells in their brains
Bees can solve seemingly clever counting tasks with very small numbers of nerve cells in their brains, according to researchers at Queen Mary University of London.

Read More: Nerve Cells News and Nerve Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.