One giant leap for space robotics

July 22, 2016

Autonomous robots capable of walking, swimming and climbing, will replicate insects, birds, animals and even humans on future missions of space exploration within decades, according to a new UK-RAS Network white paper led by Professor Yang Gao, Head of STAR Lab at the University of Surrey. Space Robotics and Autonomous Systems: Widening the horizon of space exploration also reveals that the rapid evolution of technologies powering space RAS will have beneficial applications in sectors such as healthcare, mining and agriculture.

Lead author Professor Yang Gao, Head of STAR Lab at the University of Surrey's Space Centre explained, "Since the 1990s, a new generation of planetary exploration has travelled further into the solar system and is required to become increasingly more convincing as a human proxy in space. This will lead to the development of robotic explorers and assistants that can carry out such complex tasks that they could tangibly replace humans in space or assist astronauts on a mission."

Such skills include the ability for space robotics to be equipped with new sensing techniques in order to acquire 3D perception, and to have the ability to climb, swim, dig, fly, sail, navigate and dock spacecraft without humans, as well as to interact with humans.

European Space Agency (ESA) Astronaut Roberto Vittori who launched the white paper, said: "Space robotics is central to the future of space exploration. The importance of this area of science cannot be understated, something I can personally attest to having been responsible for the space shuttle's robotic arm in the instillation of a six-tonne cosmic ray detector to the International Space Station. This Space Robotics white paper will be instrumental in providing a clear vision as we continue to push new boundaries in both man and unmanned spaceflight."

The University of Surrey is at the forefront of research in this area. Part of Surrey Space Centre (SSC), the Surrey Technology for Autonomous Systems and Robotics (STAR) Lab specialises in developing contemporary robotics solutions and autonomous systems that monitor and service spacecraft, remove space debris and explore new space frontiers and extra-terrestrial surfaces.

Examples include robotic arms capable of grabbing space debris and consigning it to a recycling bin, and ideas to 'modularise' spacecraft so that individual subsystem modules can be replaced if they fail.

These are all tasks which would be extremely dangerous and hugely expensive if performed by human astronauts without using robots.

Bringing benefits back down to earth

While space robotics and autonomous systems (RAS) are broadening what is possible in space, they are also bringing benefits closer to home.

Professor Gao explained, "Increasingly we are seeing non-space industries interested in applying our expertise to their own areas, such as the nuclear sector which also has to deal with a high radiation, hazardous environment.

"We're now developing robotic vision-based software for Sellafield which can help sort and segregate nuclear waste autonomously. Also, for the agricultural sector we've been asked to develop a small autonomous vehicle that can identify diseased crops, take high resolution images and deploy a robotic arm to take samples if required."

Other industries that will benefit as a direct result from the technical advancements in space robotics include:

The white paper report highlights technological needs, challenges and solutions that space robotics are likely to overcome over the coming decades. At an estimated $10,000 per kilogram to launch a satellite merely into low Earth orbit, cost saving solutions such as the ability to repair spacecraft in orbit using space RAS is becoming very attractive to the rapidly expanding space industry.
-end-
Media enquiries, interview requests and images: Ashley Lovell, Media Relations Office at the University of Surrey, Tel: 01483 686141 or E-mail: ashley.lovell@surrey.ac.uk

University of Surrey

Related Robotics Articles from Brightsurf:

Borrowing from robotics, scientists automate mapping of quantum systems
Riddhi Gupta has taken an algorithm used for autonomous vehicles and adapted it to help characterise and stabilise quantum technology.

COVID-19 should be wake-up call for robotics research
Robots could perform some of the 'dull, dirty and dangerous' jobs associated with combating the COVID-19 pandemic, but that would require many new capabilities not currently being funded or developed, an editorial in the journal Science Robotics argues.

How robots can help combat COVID-19: Science Robotics editorial
Can robots be effective tools in combating the COVID-19 pandemic?

Novel use of robotics for neuroendovascular procedures
The advanced technology has the potential to change acute stroke treatment.

Robotics: Teaming for future soldier combat
The US Army's investment for the 10 year, Army-led foundational research program has resulted in advanced science in four critical areas of ground combat robotics that affect the way US Warfighters see, think, move and team.

New haptic arm places robotics within easy reach
Imagine being able to build and use a robotic device without the need for expensive, specialist kit or skills.

AI-guided robotics enable automation of complex synthetic biological molecules
This article describes a platform that combines artificial intelligence-driven synthesis planning, flow chemistry and a robotically controlled experimental platform to minimize the need for human intervention in the synthesis of small organic molecules.

A step forward in wearable robotics: Exosuit assists with both walking and running
A soft robotic exosuit -- worn like a pair of shorts -- can make both walking and running easier for the wearer, a new study reports.

A first in medical robotics: Autonomous navigation inside the body
Bioengineers at Boston Children's Hospital report the first demonstration of a robot able to navigate autonomously inside the body.

Engineers build a soft robotics perception system inspired by humans
An international team of researchers has developed a perception system for soft robots inspired by the way humans process information about their own bodies in space and in relation to other objects and people.

Read More: Robotics News and Robotics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.