Nav: Home

Living components

July 22, 2019

Cells assemble dynamically: their components are continuously exchanging and being replaced. This enables the structures to adapt easily to different situations, and by rearranging the components to respond to stimuli faster, to renew or to form just on demand. The microtubules, a scaffold structure made of protein fibers that can be found in the cytoplasm of the cells of algae, plants, fungi, animals and humans, are one such dynamic mesh. Because of their self-organizing structure, these fibers constantly form and degrade at the same time, thereby actively supporting the cell in complex tasks such as cell division or locomotion. The fibers require energy to form and maintain such dynamic states. Now, for the first time, Prof. Dr. Andreas Walther and Dr. Laura Heinen from the Institute for Macromolecular Chemistry and the Center of Interactive Materials and Bioinspired Technologies (FIT) at the University of Freiburg have succeeded in programming the dynamics of such dissipative, i.e. energy-consuming, structures in an artificial chemical system on the basis of DNA components. The researchers present their results in the latest edition of the journal Science Advances.

The difficulty of programmable structural dynamics in synthetic dissipative systems is the synchronization of the energetic deactivation and activation with the structural build-up and degradation of the components. The Freiburg researchers were able to solve the problem by using an energy-driven, dynamic covalent bond, that is responsible for the firm cohesion of atoms, in the backbone of the DNA sequences. The covalent bond is herein formed through the catalytic activity of the enzyme T4 DNA ligase, and simultaneously split at the very same site by a restriction enzyme, which can recognize and cut DNA at specific positions. This newly-formed system is reversible and results directly in structural dynamics, which distinguishes it from previous artificially-generated dissipative structures.

The study, which took place with the aid of Walther's ERC Starting Grant "TimeProSAMat", uses the dynamic synthesis of a polymer of DNA fragments, to show scientists how the lifetime, exchange frequency, or relative bond fraction of the DNA polymers can be controlled in dependence of the chemical fuel adenosine triphosphate and the enzyme concentrations. The Freiburg researchers were able to sustain these dynamic steady states for several days. The chemical modifications of DNA to use it as a construction material are versatile and there are also many available restriction enzymes, explains Heinen, "So our concept enables wide-ranging access to innovative functional materials, which act outside thermodynamic equilibrium. And it does so with so far unique programming possibilities in its dynamic structural characteristics."
-end-
Original publication:

Heinen, L., Walther, A. (2019): Programmable dynamic steady states in ATP-driven nonequilibrium DNA systems. In: Science Advances. Vol. 5, no. 7. DOI: 10.1126/sciadv.aaw0590

Contact:

Institute for Macromolecular Chemistry and FIT - Freiburg Center of Interactive Materials and Bioinspired Technologies University of Freiburg

University of Freiburg

Related Dna Articles:

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.
Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.