Nav: Home

Learning to look

July 22, 2019

To answer the question, "Where's Waldo?" readers need to look for a number of distinguishing features. Several characters may be spotted with a striped scarf, striped hat, round-rimmed glasses, or a cane, but only Waldo will have all of these features.

As described July 22, 2019, in Nature Microbiology, a team led by scientists at the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a DOE Office of Science User Facility, developed an algorithm that a computer could use to conduct a similar type of search in microbial and metagenomic databases. In this case, the machine "learned" to identify a certain type of bacterial viruses or phages called inoviruses, which are filamentous viruses with small, single-stranded DNA genomes and a unique chronic infection cycle.

"We're not sure why we systematically manage to miss them; maybe it's due to the way we currently isolate and extract viruses," said the study's lead author Simon Roux, a JGI research scientist in the Environmental Genomics group.

Training the Search Tool

Inoviruses are stealth agents that can enter and exit through the cell membrane without lysing the bacterial host. They can also influence their host's growth and pathogenicity, in turn affecting the microbe's own eukaryote host. As their small genomes can be easily manipulated through genetic engineering, inoviruses are used for several biotechnological applications, most notably, phage display. The search tool Roux and his colleagues developed first worked on a reference dataset that included genome sequences known to be affiliated with the Inoviridae. "What we're really doing is looking for a particular gene found in all inoviruses, and then checking the surrounding genes," he said. "If these genes are similar in size and function to those in typical bacterial or archaeal genomes, the sequence is most likely not an inovirus. But if these nearby genes are both short and novel, then that's a very good indicator that it is a genuine inovirus."

After Roux manually curated the results and refined the algorithm, the search tool combed through more than 70,000 microbial and metagenome datasets, ultimately identifying more than 10,000 inovirus-like sequences compared to the 56 previously known inovirus genomes. "These genomes are so special, regular search methods don't work," said Roux. "The machine learning approach allows you to quickly scale up once you've found the right features that you can use to identify the inoviruses."

Overhauling the Perception of Inovirus Diversity

The results revealed inoviruses are in every major microbial habitat--including soil, water, and humans--around the world. By the numbers, the new approach detected inoviruses in 3,609 (6 percent) of the 56,868 microbial genomes and 2,249 of the 6,412 (35 percent) metagenomes mined for this study. "We're simply getting much better at seeing them, which means we can now study their biology much more meaningfully," Roux noted of the result.

"It troubled me for a long time that we had only a handful of representatives of this virus group," said virologist Mart Krupovic of the Institut Pasteur, one of the study co-authors and an expert on inoviruses. "The result of this hidden diversity of inoviruses now overhauls our perception of this virus group - from minor curiosities they become a prominent component of the prokaryotic virome associated with nearly all bacterial phyla across virtually every ecosystem."

By significantly expanding the known diversity of these viruses, genomic analyses led the team to propose that the Inoviridae should be classified as an order of viruses, with six families. Additionally, the team uncovered a range of genetic diversity among inoviruses with more than 3,400 different proteins, many linked to key functions such as virion structure and extrusion, and DNA replication and integration. The researchers also learned how an inovirus' strategy of integrating itself within a host can lead to beneficial or antagonistic interactions with other co-infecting phages and with the host's CRISPR-Cas immunity systems.

Countering Co-Infections, Ensuring Host Survival

Many bacteria have CRISPR-Cas systems that incorporate short sequences from infecting viruses and phages to help the bacterial host resist foreign genetic elements. In some cases, Roux and his colleagues found that the inoviruses were being targeted by their hosts' own CRISPR-Cas systems, termed "self-targeting," and yet still survived. The persistence of these "self-targeting" inoviruses suggested they had found a way to deactivate the CRISPR-Cas systems, and led the researchers to predict the presence of anti-CRISPRs, recently discovered inhibitors of bacterial CRISPR-Cas systems that have no conserved structural motifs or domain architectures.

"Anti-CRISPRs are important from the standpoint of phage-bacterial coevolution and are also useful tools in CRISPR-Cas applications, but we are limited in our predictive methods to discover new anti-CRISPRs," said Adair Borges, a graduate student in bacterial immunologist Joe Bondy-Denomy's lab at the University of California, San Francisco. Both are co-authors on the study. "By finding a new anti-CRISPR locus, in an inovirus for example, we would be able to discover all the new anti-CRISPRs that are associated with that genetic neighborhood. So anti-CRISPR loci are powerful discovery tools, by finding even one new anti-CRISPR locus, you are unlocking many new anti-CRISPRs."

Borges worked with Roux and found that the inoviruses don't need to make their own anti-CRISPRs. Instead, she said, the inoviruses she studied "piggyback" off the anti-CRISPRs made by the co-infecting phages in the same host cell, relying on their shared desire to avoid CRISPR-Cas immunity. In addition, Borges also showed that inoviruses might prevent new phages from infecting a cell in which the inovirus has established itself through a process called superinfection exclusion, which is another way by which they can help their host survive.

"It is an exciting time to be studying filamentous phages!" said Krupovic. "We can now start inquiring into their impact on microbial communities in the environment and also those associated with humans."
-end-
The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. DOE JGI, headquartered in Walnut Creek, Calif., provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE's Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

DOE/Lawrence Berkeley National Laboratory

Related Diversity Articles:

Genetic diversity facilitates cancer therapy
Cancer patients with more different HLA genes respond better to treatment.
A new ranavirus threatens US amphibian diversity
In a study published in the Oct. 15 issue of Ecological Modelling, a team of University of Tennessee researchers along with a colleague from the University of Florida model how a chimeric Frog virus 3 (FV3)-like ranavirus, also known as RCV-Z2, can spread rapidly throughout a population of North American wood frog (Lithobates sylvaticus) tadpoles.
New way to target cancer's diversity and evolution
Scientists have revealed close-up details of a vital molecule involved in the mix and match of genetic information within cells -- opening up the potential to target proteins of this family to combat cancer's diversity and evolution.
Heterogeneity in the workplace: 'Diversity is very important to us -- but not in my team'
Diversity in the workplace is highly sought in theory, but often still lacking in practice.
Diversity increases ecosystem stability
Freiburg's forestry scientists prove that forests that are more diverse are also more productive and more resilient
Diversity on teams leads to positive outcomes, but not for all
Individuals on teams of diverse people working together can have better outcomes than those on teams with similar individuals, research as shown.
Good medicine depends on diversity
Nearly 80 percent who have contributed DNA for research are of European ancestry.
How can organizations promote and benefit from socioeconomic diversity?
A new white paper has been published by the Society for Industrial and Organizational Psychology.
Back to the sources of neural diversity
The diversity of the tasks the cortex can perform is reflected in the diversity of the neurons that compose it.
Plant diversity increases insect diversity
The more plant species live in grasslands and forests, the more insect species find a habitat there.
More Diversity News and Diversity Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.