Nav: Home

Genes linked to death from sepsis ID'd in mice

July 22, 2019

Sepsis is a life-threatening condition that occurs when the body's immune response to infection spirals out of control. Bacteria in the bloodstream trigger immune cells to release powerful molecules called cytokines to quickly activate the body's defenses. Sometimes the response goes overboard, creating a so-called "cytokine storm" that leaves people feverish or chilled, disoriented and in pain. In severe cases, it can lead to multi-organ failure and death.

Now, researchers at Washington University School of Medicine in St. Louis have found a set of genes that help cells survive exposure to cytokines. The genes are involved in disposing of cellular waste, a process known as autophagy. Mice that lack key autophagy genes are more likely to die from sepsis, the study shows. The findings raise the possibility that enhancing autophagy could potentially lead to treatments for the deadly condition.

"When we recognize signs of sepsis in patients, we prescribe antibiotics and fluids, but we lack therapies to protect patients from the direct effects of the cytokine storm," said first author Anthony Orvedahl, MD, PhD, an instructor in pediatric infectious diseases. "Our research indicates that if we could modulate autophagy levels in cells, we might be able to promote cell survival and resistance to the cytokine storm, which may ultimately help people survive sepsis."

The study is published online the week of July 22 in Proceedings of the National Academy of Sciences.

Sepsis is a medical emergency and even with prompt medical care, about 15 percent of people do not survive, while many survivors experience longstanding complications. Orvedahl - along with colleagues including senior author Herbert "Skip" Virgin, IV, MD, PhD, now at Vir Biotechnology, and co-author Gary A. Silverman, MD, PhD, the Harriet B. Spoehrer Professor and head of the Department of Pediatrics - set out to find what protects cells from dying during a cytokine storm.

The researchers looked at the effects of interferon gamma, a cytokine that activates immune cells' ability to kill bacteria but can also trigger cell death. By systematically inactivating one gene at a time from immune cells in a dish before treating them with interferon gamma, the researchers discovered that cells need a full complement of autophagy genes to survive exposure to the potent cytokine. Further experiments revealed that a second cytokine, called tumor necrosis factor, was also critical for the accelerated cell death in this system.

"Autophagy is like cleaning the house, getting rid of all the junk inside the cell," Orvedahl said. "If unwanted things start to accumulate via a defect in this recycling system, it's like a tinderbox waiting for a spark. We don't yet know the exact material involved, but we think something builds up and makes cells more vulnerable to dying when they encounter these inflammatory cytokines."

The importance of autophagy on cell survival suggests that the process may also be crucial for the survival of animals - and people - in the midst of a cytokine storm. To find out, the researchers studied four strains of genetically modified mice that lacked one of four autophagy genes in their immune cells, as well as mice with intact autophagy genes. They injected mice with tumor necrosis factor, which is thought to drive the cytokine storm in people. The mice whose autophagy systems were crippled by the absence of important autophagy genes got sick faster and were more likely to die.

Chemical compounds that enhance or block autophagy are already being studied by researchers focused on cancer, cardiovascular disease and other conditions. Therapies that suppress autophagy may increase the risk of sepsis, Orvedahl said. Further, he cautioned that more research is needed before doctors can evaluate whether boosting autophagy is a viable strategy for treating sepsis.

"We can't say for sure that autophagy activation would be protective," Orvedahl said. "We just showed that if mice lack autophagy, they are sicker and more likely to die. But we think that a better understanding of these processes could lead to attractive targets for developing more effective ways to treat sepsis."
-end-


Washington University School of Medicine

Related Immune Response Articles:

Platelets exacerbate immune response
Platelets not only play a key role in blood clotting, but can also significantly intensify inflammatory processes.
How to boost immune response to vaccines in older people
Identifying interventions that improve vaccine efficacy in older persons is vital to deliver healthy ageing for an ageing population.
Unveiling how lymph nodes regulate immune response
The Hippo pathway keeps lymph nodes' development healthy. If impaired, lymph nodes become full of fat cells or fibrosis develops.
Early immune response may improve cancer immunotherapies
Researchers report a new mechanism for detecting foreign material during early immune responses.
Researchers decode the immune response to Ebola vaccine
The vaccine rVSV-EBOV is currently used in the fight against Ebola virus.
Immune response depends on mathematics of narrow escapes
The way immune cells pick friends from foes can be described by a classic maths puzzle known as the 'narrow escape problem'.
Signature of an ineffective immune response to cancer revealed
Our immune system is programmed to destroy cancer cells. Sometimes it has trouble slowing disease progression because it doesn't act quickly or strongly enough.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Having stressed out ancestors improves immune response to stress
Having ancestors who were frequently exposed to stressors can improve one's own immune response to stressors, according to Penn State researchers.
Researchers discovered new immune response regulators
The research groups of Academy Professor Riitta Lahesmaa and Research Director Laura Elo from Turku Centre for Biotechnology have discovered new proteins that regulate T cells in the human immune system.
More Immune Response News and Immune Response Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.