Photonic crystal light converter

July 22, 2020

Spectroscopy is the use of light to analyze physical objects and biological samples. Different kinds of light can provide different kinds of information. Vacuum ultraviolet light is useful as it can aid people in a broad range of research fields, but generation of that light has been difficult and expensive. Researchers created a new device to efficiently generate this special kind of light using an ultrathin film with nanoscale perforations.

The wavelengths of light you see with your eyes constitute a mere fraction of the possible wavelengths of light that exist. There's infrared light which you can feel in the form of heat, or see if you happen to be a snake, that has a longer wavelength than visible light. At the opposite end is ultraviolet (UV) light which you can use to produce vitamin D in your skin, or see if you happen to be a bee. These and other forms of light have many uses in science.

Within the UV range is a subset of wavelengths known as vacuum ultraviolet light (VUV), so called because they are easily absorbed by air but can pass through a vacuum. Some VUV wavelengths in the region of around 120-200 nanometers are of particular use to scientists and medical researchers as they can be used for chemical and physical analyses of different materials and even biological samples.

However, there is more to light than a wavelength. For VUV to be truly useful, it also needs to be twisted or polarized in a manner called circular polarization. Existing methods to produce VUV, such as using particle accelerators or laser-driven plasmas, have many drawbacks, including cost, scale and complexity. But also, these can only produce untwisted linear polarized VUV. If there was a simple way to make circular polarized VUV, it would be extremely beneficial. Assistant Professor Kuniaki Konishi from the Institute for Photon Science and Technology at the University of Tokyo and his team may just have the answer.

"We have created a simple device to convert circularly polarized visible laser light into circularly polarized VUV, twisted in the opposite direction," said Konishi. "Our photonic crystal dielectric nanomembrane (PCN) consists of a sheet made from an aluminium oxide-based crystal (?-Al2O3) only 48 nm thick. It sits atop a 525 micrometer-thick sheet of silicon which has 190 nm-wide holes cut into it 600 nm apart."

To our eyes the PCN membrane just looks like a flat featureless surface, but under a powerful microscope the pattern of perforations can be seen. It looks a little like the holes in a showerhead which increase the water pressure to make jets.

"When pulses of circularly polarized blue laser light with a wavelength of 470 nm shine down these channels in the silicon, the PCN acts on these pulses and twists them in the opposing direction," said Konishi. "It also shrinks their wavelengths to 157 nm which is well within the range of VUV that is so useful in spectroscopy."

With short pulses of circularly polarized VUV, researchers can observe fast or short-lived physical phenomena at the submicrometer scale that are otherwise impossible to see. Such phenomena include the behaviors of electrons or biomolecules. So this new method to generate VUV can be useful to researchers in medicine, life sciences, molecular chemistry and solid state physics. Although a similar method has been demonstrated before, it produced less useful longer wavelengths, and did so using a metal-based film which is subject to rapid degradation in the presence of laser light. PCN is far more robust to this.

"I am pleased that through our study of PCN, we found a new and useful application for circularly polarized light conversion, generating VUV with the intensity required to make it ideal for spectroscopy," said Konishi. "And it was surprising that the PCN membrane could survive the repeated bombardment of laser light, unlike previous metal-based devices. This makes it suitable for lab use where it may be used extensively over long periods. We did this for basic science and I hope to see many kinds of researchers make good use of our work."
-end-
Journal article

Kuniaki Konishi, Daisuke Akai, Yoshio Mita, Makoto Ishida, Junji Yumoto And Makoto Kuwata-Gonokami. Circularly polarized vacuum ultraviolet coherent light generation using a square lattice photonic crystal nanomembrane. Optica (2020).

DOI: 10.1364/OPTICA.393816

Link: https://doi.org/10.1364/OPTICA.393816

Funding and support

JST PRESTO (JPMJPR18G6), JSPS KAKENHI (18H01147), MEXT Q-LEAP (JPMXS0118067246), MEXT Photon Frontier Network Program and MEXT "Nanotechnology Platform" (JPMXP09F19UT0013 and JPMXP09A16UT0162) and the Center of Innovation Program funded by the Japan Science and Technology Agency.

Useful links

Institute for Photon Science and Technology - http://www.ipst.s.u-tokyo.ac.jp/

Graduate School of Science - https://www.s.u-tokyo.ac.jp/en/index.html

Research contact

Assistant Professor Kuniaki Konishi
Institute for Photon Science and Technology, Graduate School of Science,
The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, JAPAN
Email: kkonishi@ipst.s.u-tokyo.ac.jp

Press Contact

Mr. Rohan Mehra
Division for Strategic Public Relations, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, JAPAN
Tel: +81-(0)80-9707-8450
Email: press-releases.adm@gs.mail.u-tokyo.ac.jp

About the University of Tokyo

The University of Tokyo is Japan's leading university and one of the world's top research universities. The vast research output of some 6,000 researchers is published in the world's top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 4,000 international students. Find out more at http://www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

University of Tokyo

Related Laser Articles from Brightsurf:

Laser-powered nanomotors chart their own course
The University of Tokyo introduced a system of gold nanorods that acts like a tiny light-driven motor, with its direction of motion is determined by the orientation of the motors.

What laser color do you like?
Researchers at the National Institute of Standards and Technology (NIST) and the University of Maryland have developed a microchip technology that can convert invisible near-infrared laser light into any one of a panoply of visible laser colors, including red, orange, yellow and green.

Laser technology: The Turbulence and the Comb
While the light of an ordinary laser only has one single, well-defined wavelength, a so-called ''frequency comb'' consists of different light frequencies, which are precisely arranged at regular distances, much like the teeth of a comb.

A laser for penetrating waves
The 'Landau-level laser' is an exciting concept for an unusual radiation source.

Laser light detects tumors
A team of researchers from Jena presents a groundbreaking new method for the rapid, gentle and reliable detection of tumors with laser light.

The first laser radio transmitter
For the first time, researchers at Harvard School of Engineering have used a laser as a radio transmitter and receiver, paving the way for towards ultra-high-speed Wi-Fi and new types of hybrid electronic-photonic devices.

The random anti-laser
Scientists at TU Wien have found a way to build the 'opposite' of a laser -- a device that absorbs a specific light wave perfectly.

Laser 'drill' sets a new world record in laser-driven electron acceleration
Combining a first laser pulse to heat up and 'drill' through a plasma, and another to accelerate electrons to incredibly high energies in just tens of centimeters, scientists have nearly doubled the previous record for laser-driven particle acceleration at Berkeley Lab's BELLA Center.

Laser physics: Transformation through light
Laser physicists have taken snapshots of how C60 carbon molecules react to extremely short pulses of intense infrared light.

Laser-induced graphene gets tough, with help
Laser-induced graphene created at Rice University combines with many materials to make tough, conductive composites for wearable electronics, anti-icing, antimicrobial applications, sensors and water treatment.

Read More: Laser News and Laser Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.