'Seeing' and 'manipulating' functions of living cells

July 22, 2020


A research group composed of Professor Takayuki Shibata and his colleagues at Department of Mechanical Engineering, Toyohashi University of Technology has given greater functionalities to atomic force microscopy (AFM). Our research team has succeeded in minimally invasive surgery to living cells using photocatalytic oxidation controlled in a nanoscale space and visualizing dynamic information on intracellular biomolecules. This proposed technique for controlling and visualizing the process of cell function expression on a high level has significant potential as a strong nanofabrication and nanomeasurement system to solve the mystery of life.


An integrated understanding of life phenomena and the control thereof are absolutely essential for further development of the medical and pharmaceutical fields. The thesis for creating life innovation is to solve the structure and function of biomolecules such as genomes, proteins, and sugar chains and also solve the function of cells, which are the basic unit for life activity. Therefore, we aim to establish a technology for minimally invasive surgery to target living cells at a molecular level (God's hand to manipulate the function of cells) and visualizing changes in the dynamic behavior of intracellular biomolecules and the state of cell membrane protein at a single molecular level (God's eye to see the function of cells), and thus provide an innovative nanofabrication and nanomeasurement platform to solve the mystery of life.

Here, our research team has succeeded in giving two new functions to atomic force microscopy (AFM)1). The first advancement is to coat the tip apex of an AFM probe with a thin film of titanium oxide (TiO2) known as a photocatalyst. By this method, the photocatalytic reaction is localized in a nanoscale space (100 nm region) in the vicinity of the tip apex to achieve minimally invasive cell membrane perforation. As a result, the probability of cell membrane perforation reaches 100%, and a cell viability of 100% is also successfully achieved, allowing us to verify that minimally invasive surgery can be carried out. The second advancement is to insert the tip apex of an AFM probe coated with silver (Ag) nanoparticles into a living cell. We have thus succeeded in acquiring a sensitive Raman spectrum originating in protein, DNA, lipids, etc. (Tip-Enhanced Raman Spectroscopy, TERS). By this method, a difference in the ratio of biomolecules between a cell's nucleus and cytoplasm was visualized as information inside a cell, and it was found that there is an inverse correlation (a phenomenon that as one increases, the other decreases) between proteins and glycogen (also called animal starch) as temporal changes in biomolecules inside cells.

1) Atomic Force Microscopy (AFM) is a microscope that detects the atomic force affecting the tip apex and the surface of a sample and was invented by Dr. Gerd Binning and others at IBM Zurich Laboratories in 1985. AFM is a strong tool that can directly observe atomic and molecular images and also evaluate mechanical properties such as frictional force and hardness and electric, magnetic, and thermal properties with nanoscale spatial resolution, becoming a fundamental technology leading today's nanotechnology. Furthermore, AFM can make observations not only in the atmosphere but also in liquids, and thus has been actively applied in the life science and biotechnology fields.

Future Outline

In order to simultaneously achieve nanofabrication and nanomeasurement functions, we will establish a tip-enhanced Raman spectroscopic (TERS) function by coating the surface of a TiO2-functionalized AFM probe with Ag nanoparticles in the future. This function will be able to visualize the process of degradation reactions of organic substances based on photocatalytic oxidation (changes in molecular structures) during the cell surgery process. We will also aim to achieve a means for measuring a single molecule in a target cell membrane protein using the high molecular recognition ability of an antigen-antibody reaction, and we will aim to establish a technique for selective nanofabrication for a single molecule in the target membrane protein identified by the above means. It is expected that this proposed technique could solve the mechanisms of life functions and be applied to work such as the development of novel medicines.
This work was partially supported by JSPS KAKENHI Grant Number JP18K18805.


Takayuki Shibata, Hiromi Furukawa, Yasuharu Ito, Masahiro Nagahama, Terutake Hayashi, Miho Ishii-Teshima, and Moeto Nagai. (2020) Photocatalytic Nanofabrication and Intracellular Raman Imaging of Living Cells with Functionalized AFM Probes. Micromachines, 11(5), 495. 10.3390/mi11050495.

Takayuki Shibata, Naohiro Iio, Hiromi Furukawa, and Moeto Nagai. (2017) Nanofabrication Technique Based on Localized Photocatalytic Reactions Using a TiO2-coated Atomic Force Microscopy Probe. Applied Physics Letters, 110(6), 063701. 10.1063/1.4976199.

Toyohashi University of Technology (TUT)

Related Protein Articles from Brightsurf:

The protein dress of a neuron
New method marks proteins and reveals the receptors in which neurons are dressed

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Diets high in protein, particularly plant protein, linked to lower risk of death
Diets high in protein, particularly plant protein, are associated with a lower risk of death from any cause, finds an analysis of the latest evidence published by The BMJ today.

A new understanding of protein movement
A team of UD engineers has uncovered the role of surface diffusion in protein transport, which could aid biopharmaceutical processing.

A new biotinylation enzyme for analyzing protein-protein interactions
Proteins play roles by interacting with various other proteins. Therefore, interaction analysis is an indispensable technique for studying the function of proteins.

Substituting the next-best protein
Children born with Duchenne muscular dystrophy have a mutation in the X-chromosome gene that would normally code for dystrophin, a protein that provides structural integrity to skeletal muscles.

A direct protein-to-protein binding couples cell survival to cell proliferation
The regulators of apoptosis watch over cell replication and the decision to enter the cell cycle.

A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.

Resurrecting ancient protein partners reveals origin of protein regulation
After reconstructing the ancient forms of two cellular proteins, scientists discovered the earliest known instance of a complex form of protein regulation.

Sensing protein wellbeing
The folding state of the proteins in live cells often reflect the cell's general health.

Read More: Protein News and Protein Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.