New research finds graphene can act as surfactant

July 22, 2020

New research into graphene flakes has discovered that the material can act as a surfactant, for the first time demonstrating how it can be a versatile 2D stabiliser ideal for many industrial applications from oil extraction to paper processing.

Pristine graphene is completely water repellent, but the researchers found that at a particular size (below 1-micron lateral size), amphiphilic behaviour is possible. This graphene flake attracts water at its edges but repels it on its surface, making it a new generation of surfactant that can stabilise oil and water mixtures.

Krzysztof Koziol, Professor of Composites Engineering and Head of the Enhanced Composites and Structures Centre at Cranfield University said, "This new finding, and clear experimental demonstration of surfactant behaviour of graphene, has exciting possibilities for many industrial applications. We produced pristine graphene flakes, without application of any surface treatment, at a specific size which can stabilise water/oil emulsions even under high pressure andhigh temperature . Unlike traditional surfactants which degrade and are often corrosive, graphene opens new level of material resistance,can operate at high pressures, combined with high temperatures and even radiation conditions; and we can recycle it. Graphene has the potential to become a truly high-performance surfactant."

The qualities of this graphene flake make it an ideal material to be combined with water and used as a surfactant in environmently friendly extraction of minerals, crude oil and other ores from rock. There is also need for better quality surfactants as plasticisers for fluid concrete, additives in flameroofing and waterproofing as well as lubricants in drilling fluids to improve effectiveness of drilling operations.

The surfactants currently in use are corrosive and degrade under intense heat and pressured environments. Graphene offers a more stable, cost-effective and environmentally friendly way to operate in harsh geological or chemical environments.

Mike Payne, Professor of Computational Physics at Cambridge University, who was one of the co-researchers for this project, said: "There is an enormous volume of scientific research on graphene. In some ways this is to be applauded but it can also lead to conflicting results in the literature - as in the present example of whether graphene flakes are hydrophobic or amphiphilic. Our work combines exciting experiments on well characterised material with a range of theoretical simulations, including quantum mechanical calculations. Together they provide a detailed understanding of the properties of the graphene flakes and a definitive answer to this question."
-end-
Cranfield University is now looking to develop the research to commercial levels of application. The True Amphipathic Nature of Graphene Flakes - a Versatile 2D Stabilizer is published in Advanced Materials.

Cranfield University

Related Graphene Articles from Brightsurf:

How to stack graphene up to four layers
IBS research team reports a novel method to grow multi-layered, single-crystalline graphene with a selected stacking order in a wafer scale.

Graphene-Adsorbate van der Waals bonding memory inspires 'smart' graphene sensors
Electric field modulation of the graphene-adsorbate interaction induces unique van der Waals (vdW) bonding which were previously assumed to be randomized by thermal energy after the electric field is turned off.

Graphene: It is all about the toppings
The way graphene interacts with other materials depends on how these materials are brought into contact with the graphene.

Discovery of graphene switch
Researchers at Japan Advanced Institute of Science and Technology (JAIST) successfully developed the special in-situ transmission electron microscope technique to measure the current-voltage curve of graphene nanoribbon (GNR) with observing the edge structure and found that the electrical conductance of narrow GNRs with a zigzag edge structure abruptly increased above the critical bias voltage, indicating that which they are expected to be applied to switching devices, which are the smallest in the world.

New 'brick' for nanotechnology: Graphene Nanomesh
Researchers at Japan advanced institute of science and technology (JAIST) successfully fabricated suspended graphene nanomesh (GNM) by using the focused helium ion beam technology.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Graphene Flagship publishes handbook of graphene manufacturing
The EU-funded research project Graphene Flagship has published a comprehensive guide explaining how to produce and process graphene and related materials (GRMs).

How to induce magnetism in graphene
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechani-cal, electronic and optical properties.

Graphene: The more you bend it, the softer it gets
New research by engineers at the University of Illinois combines atomic-scale experimentation with computer modeling to determine how much energy it takes to bend multilayer graphene -- a question that has eluded scientists since graphene was first isolated.

How do you know it's perfect graphene?
Scientists at the US Department of Energy's Ames Laboratory have discovered an indicator that reliably demonstrates a sample's high quality, and it was one that was hiding in plain sight for decades.

Read More: Graphene News and Graphene Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.