New study shows retreat of East Antarctic ice sheet during previous warm periods

July 22, 2020

Questions about the stability of the East Antarctic Ice Sheet are a major source of uncertainty in estimates of how much sea level will rise as the Earth continues to warm. For decades, scientists thought the East Antarctic Ice Sheet had remained stable for millions of years, but recent studies have begun to cast doubt on this idea. Now, researchers at UC Santa Cruz have reported new evidence of substantial ice loss from East Antarctica during an interglacial warm period about 400,000 years ago.

The study, published July 22 in Nature, focused on the Wilkes Basin, one of several bowl-like basins at the edges of the ice sheet that are considered vulnerable to melting because the ice rests on land that is below sea level. The Wilkes Basin currently holds enough ice to raise sea level by 3 to 4 meters (10 to 13 feet).

Ice flows slowly through the basins from the interior of the continent out to the floating ice shelves at the margins. Ice loss causes the grounding line--the point at which the ice loses contact with the ground and starts floating--to shift inland, explained first author Terrence Blackburn, assistant professor of Earth and planetary sciences at UC Santa Cruz.

"Our data shows that the grounding line in the Wilkes Basin retreated 700 kilometers [435 miles] inland during one of the last really warm interglacials, when global temperatures were 1 to 2 degrees Celsius warmer than now," Blackburn said. "That probably contributed 3 to 4 meters to global sea level rise, with Greenland and West Antarctica together contributing another 10 meters."

In other words, a period of global warming comparable to what is expected under current scenarios for manmade greenhouse gas emissions resulted in an increase in sea level of around 13 meters (43 feet). Of course, this wouldn't happen all at once--it takes time for that much ice to melt.

"We've opened the freezer door, but that block of ice is still cold and it's not going anywhere in the short term," Blackburn said. "To understand what will happen over longer time scales, we need to see what happened under comparable conditions in the past."

The problem with studying the interglacial periods during the Pleistocene is that they all ended in another ice age when the ice sheet advanced again and covered up the evidence. For the new study, Blackburn and his colleagues used a novel technique based on isotope measurements in mineral deposits that record past changes in subglacial fluids.

Uranium-234 (U-234) is an isotope of uranium that accumulates very slowly in water that is in contact with rocks due to the high-energy decay of uranium-238. This happens everywhere, but in most places hydrological processes carry water away from sources of enrichment, and the U-234 gets diluted in large bodies of water. In Antarctica, however, water is trapped at the base of the ice sheet and moves very slowly as long as the ice is stable, allowing U-234 to build up to very high levels over long periods of time.

Blackburn explained that the ice sheet acts like an insulating blanket, so that heat from Earth's interior causes melting at the base. But temperatures are colder where the ice is thinner at the margins of the ice sheet, causing subglacial water to refreeze.

"Water flowing beneath the ice starts refreezing at the edges, which concentrates all the dissolved minerals until it becomes supersaturated and the minerals precipitate out to form deposits of opal or calcite," he said. "Those deposits trap uranium-234, so we can date the deposits and measure their composition, and we can track that through time to get a deep history of the composition of water under the ice sheet."

What that history suggests is that the U-234 in subglacial water in the Wilkes Basin was flushed out during the interglacial period 400,000 years ago as the ice melted and the grounding line retreated. That reset the U-234 concentration to low background levels, and accumulation then restarted when the ice advanced again.

Blackburn noted that present-day evidence for the accumulation of U-234 in subglacial fluids can be found in the McMurdo Dry Valleys, the only place where Antarctic glaciers terminate on land. There, highly concentrated brines emerge from the glaciers in places such as Blood Falls, where the blood-red color comes from high iron concentrations in the brine.

"The isotopic compositions of those brines are comparable to the precipitates that we've dated from a range of locations, and they all share the characteristic U-234 enrichment," Blackburn said. "The brines are what's left when the subglacial fluids get all the way to the edge of the ice sheet."

He said the new study was inspired by a 2016 paper in which researchers studying deep-sea corals reported evidence of a major change in ocean chemistry, including a spike in U-234, coinciding with the end of the last ice age, when the vast Laurentide Ice Sheet that covered much of North America melted.

"They speculated that it accumulates under the ice sheets and pointed to some possible sites in Antarctica where that might be happening," Blackburn said. "I happened to be in one of those places at the time."

So was his colleague, glaciologist Slawek Tulaczyk, a professor of Earth and planetary sciences at UC Santa Cruz. They discussed the paper and began planning this study, which eventually involved several UCSC faculty and students. The team collected some samples of mineral deposits themselves, but some of the most important samples used in the study were collected in the 1980s and archived at the Byrd Polar Rock Repository at Ohio State University.
-end-
In addition to Blackburn and Tulaczyk, the coauthors of the paper include James Zachos, professor and chair of Earth and planetary sciences, graduate students Graham Edwards and Gavin Piccione, undergraduates Michael Scudder and James Babbe, and instrument specialist Brandon Cheney, as well as Bernard Hallet at the University of Washington and Noah McLean at the University of Kansas. This work was funded by the National Science Foundation.

University of California - Santa Cruz

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.