Genomic signature explains FDG-avidity of PSMA-suppressed prostate tumors

July 22, 2020

Reston, Virginia--?Scientists have uncovered the genomic signature to explain why 18F-FDG imaging performs better than PSMA-targeted imaging for prostate cancer patients with low or no expression of the prostate-specific membrane antigen (PSMA). In a study published in the Journal of Nuclear Medicine, researchers determined that a neuroendocrine gene signature (common in prostate cancers with low PSMA expression) associates with a distinct differential expression of glucose transporters and hexokinase proteins, which allows for a more favorable uptake of 18F-FDG than PSMA-targeted radioligands. Additionally, the study demonstrated that zebrafish xenograft tumor models are an accurate and efficient preclinical method for monitoring nonradioactive glucose uptake.

"While PSMA-targeted molecular imaging and therapy have transformed the landscape of prostate cancer management, a small minority of prostate cancers with neuroendocrine prostate cancer may not effectively benefit from PSMA-targeted therapy," said Gi Jeong Cheon, MD, PhD, chairman of the department of nuclear medicine at Seoul national University College of Medicine in Seoul, Korea. "Previous clinical reports indicate that prostate cancers with a phenotype related to neuroendocrine tumors can be more responsive to imaging with 18F-FDG than PSMA-targeting radioligands. Our research sought to provide a genomic rationalization for this 18F-FDG avidity."

Researchers utilized data-mining approaches, cell lines and patient-derived xenograph models to study the expression levels of glucose-associated genes, including 14 members of the SLC2A family (encoding glucose transporter proteins), four members of the hexokinase family (genes HK1-HK3 and GCK) and PSMA (FOLH1 gene) after androgen-directed therapy and in correlation with neuroendocrine hallmarks. A neuroendocrine-like subset was characterized among a group of primary and metastatic prostate cancer samples with no neuroendocrine histopathology. Glucose uptake was measured in a neuroendocrine-induced in vitro model and a zebrafish model by nonradioactive imaging of glucose uptake using a fluorescent glucose bioprobe.

Upon statistical analysis, researchers found elevated expression of GCK and decreased expression of SLC2A12, which demonstrates that a neuroendocrine gene signature associates with differential expression glucose transporters and hexokinase proteins. In accordance with this expression, the suppression of PSMA in neuroendocrine prostate cancer is associated with elevated glucose uptake.

"Early detection of neuroendocrine prostate cancer development is critical for patients as these tumors do not respond to standard of care and require alternate therapies," noted Cheon. "Our data demonstrate that these tumors express genes that are in favor of higher uptake of glucose, providing genomic data to support that 18F-FDG positron emission tomography is an attractive imaging tool for these patients."

In addition to studying the expression levels of glucose uptake-associate genes, researchers sought to determine the feasibility of using nonradioactive in vivo imaging of glucose uptake in a zebrafish model. Using a fluorescent glucose bioprobe to image embryo-larval zebrafish, researchers demonstrated that zebrafish xenograft tumor models are a rapid and cost-effective method to monitor nonradioactive glucose uptake.

"The use of FDG imaging in mice can be limited by several factors, such as operating cost and short half-life of the radioactive substance and nonradioactive glucose probes, which are of particular interest. Human xenografts in mice also present challenges in engraftment rate and are both costly and time-consuming," noted Lisa A. Porter, PhD, professor at the University of Windsor in Ontario, Canada. "From technical perspective, this work indicates the zebrafish model as a promising avenue to accelerate molecular imaging in vivo experiments."

The authors of "Differential Expression of Glucose Transporters and Hexokinases in Prostate Cancer with a Neuroendocrine Gene Signature: A Mechanistic Perspective for 18F-FDG Imaging of PSMA-Suppressed Tumors," include Martin K. Bakht, Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada, Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea, and Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea; Jessica M. Lovnicki, Yuzhuo Wang and Xuesen Dong, Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Janice Tubman, Iulian Derecichei, Bre-Anne Fifield, Dorota Lubanska and Lisa A. Porter, Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada; Keith F. Stringer, Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada and Department of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Jonathan Chiaramonte, Michael R. Reynolds and John F. Trant, Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada; Rosa-Maria Ferraiuolo, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan; So Won Oh, Gi Jeong Cheon and Keon Wook Kang, Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea, and Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea; Cheol Kwak and Chang Wook Jeong, Department of Urology, Seoul National University College of Medicine, Seoul, Korea; Colm Morrissey, Department of Urology, University of Washington, Seattle, Washington; Isla M. Coleman, Divison of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington; and Hojjat Ahmadzadehfar, Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany.
Please visit the SNMMI Media Center for more information about molecular imaging and precision imaging. To schedule an interview with the researchers, please contact Rebecca Maxey at (703) 652-6772 or

About the Society of Nuclear Medicine and Molecular Imaging

The Journal of Nuclear Medicine (JNM) is the world's leading nuclear medicine, molecular imaging and theranostics journal, accessed close to 10 million times each year by practitioners around the globe, providing them with the information they need to advance this rapidly expanding field. Current and past issues of the Journal of Nuclear Medicine can be found online at

JNM is published by the Society of Nuclear Medicine and Molecular Imaging (SNMMI), an international scientific and medical organization dedicated to advancing nuclear medicine and molecular imaging--precision medicine that allows diagnosis and treatment to be tailored to individual patients in order to achieve the best possible outcomes. For more information, visit

Society of Nuclear Medicine and Molecular Imaging

Related Prostate Cancer Articles from Brightsurf:

Low risk of cancer spread on active surveillance for early prostate cancer
Men undergoing active surveillance for prostate cancer have very low rates - one percent or less - of cancer spread (metastases) or death from prostate cancer, according to a recent study published in the Journal of Urology®, an Official Journal of the American Urological Association (AUA).

ESMO 2020: Breast cancer drug set to transform prostate cancer treatment
A drug used to treat breast and ovarian cancer can extend the lives of some men with prostate cancer and should become a new standard treatment for the disease, concludes a major trial which is set to change clinical practice.

Major trial shows breast cancer drug can hit prostate cancer Achilles heel
A drug already licensed for the treatment of breast and ovarian cancers is more effective than targeted hormone therapy at keeping cancer in check in some men with advanced prostate cancer, a major clinical trial reports.

The Lancet: Prostate cancer study finds molecular imaging could transform management of patients with aggressive cancer
Results from a randomised controlled trial involving 300 prostate cancer patients find that a molecular imaging technique is more accurate than conventional medical imaging and recommends the scans be introduced into routine clinical practice.

Common genetic defect in prostate cancer inspires path to new anti-cancer drugs
Researchers found that, in prostate cancer, a mutation leading to the loss of one allele of a tumor suppressor gene known as PPP2R2A is enough to worsen a tumor caused by other mutations.

First prostate cancer therapy to target genes delays cancer progression
For the first time, prostate cancer has been treated based on the genetic makeup of the cancer, resulting in delayed disease progression, delayed time to pain progression, and potentially extending lives in patients with advanced, metastatic prostate cancer, reports a large phase 3 trial.

Men taking medications for enlarged prostate face delays in prostate cancer diagnosis
University of California San Diego School of Medicine researchers report that men treated with medications for benign prostatic hyperplasia (enlarged prostate) experienced a two-year delay in diagnosis of their prostate cancer and were twice as likely to have advanced disease upon diagnosis.

CNIO researchers confirm links between aggressive prostate cancer and hereditary breast cancer
The study has potential implications for families with members suffering from these types of tumours who are at an increased risk of developing cancer.

Distinguishing fatal prostate cancer from 'manageable' cancer now possible
Scientists at the University of York have found a way of distinguishing between fatal prostate cancer and manageable cancer, which could reduce unnecessary surgeries and radiotherapy.

Researchers find prostate cancer drug byproduct can fuel cancer cells
A genetic anomaly in certain men with prostate cancer may impact their response to common drugs used to treat the disease, according to new research at Cleveland Clinic.

Read More: Prostate Cancer News and Prostate Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to