Alcohol researchers suggest specific binding site for anesthetics and alcohols

July 23, 2000

Reporting in today's Early Edition of the August Proceedings of the National Academy of Sciences, researchers at the University of Texas at Austin and Stanford University describe a novel approach that may help scientists to better understand how alcohols and anesthetic drugs interact with certain brain proteins. The report also provides the strongest evidence to date that alcohols have specific protein binding sites.

R. Adron Harris, Ph.D., Director, Waggoner Center for Alcohol and Addiction Research, Institute for Cellular and Molecular Biology, University of Texas at Austin, with colleagues Maria Paola Mascia, Ph.D. (University of Texas) and James R. Trudell, Ph.D. (Stanford University), developed a way to attach an anesthetic analogue called propanethiol to amino acid residues at a specific site in glycine and GABAA receptors. GABA and glycine receptors are the primary mediators of inhibitory neurotransmission in the brain and spinal cord.

The new work adds weight to previous studies that suggested that alcohols and anesthetic drugs exert some of their effects by interacting with specific protein molecules in the brain. Propanethiol (and also propyl-methanethiosulfanate), the researchers found, irreversibly enhances receptor function and obviates the ability of other alcohols and anesthetics to potentiate receptor function.

"Today's report advances general medical understanding of the basic pharmacology of alcohols and anesthetics," said Enoch Gordis, M.D., Director of the National Institute on Alcohol Abuse and Alcoholism (NIAAA). "Accumulating knowledge of how beverage alcohol (ethanol) produces its anesthetic and intoxicating effects at these receptors may lead to new pharmacologic and behavioral interventions."

For years, prevailing wisdom held that, unlike drugs with a single site of action, alcohols and anesthetics acted on many nonspecific sites of the neuronal membrane. More recent research has shown that these compounds act on specific receptor proteins, including the glycine and GABA neurotransmitter-activated ion channels. Defining the precise mechanisms of these actions, however, has defied traditional research methods, largely because of the low affinities and rapid kinetics that characterize alcohol and anesthetic compounds. To overcome these obstacles, Dr. Harris and his colleagues used anesthetic alcohol analogues capable of forming irreversible (covalent) bonds with specific amino acids.

Previous studies suggested that alcohols and general anesthetics interacted with the amino acids of the second (TM2) and third (TM3) transmembrane portions of the glycine and GABA receptors and that the presence of a serine amino acid (S267) in TM2 and an alanine amino acid (A288) in TM3 was necessary for the alcohols and anesthetics to trigger receptor response. To test whether either S267 and A288 in the glycine receptor and equivalent residues (S270 and A291) in the GABAA receptor indicated a critical binding site, Dr. Harris and his colleagues changed S267 and A288 to cysteine and tested whether propanethiol or proply-methanethiosulfanate bound with cysteine at the critical positions. If either S267 or A288 was a critical binding site, the research team reasoned, the analogue should irreversibly activate the altered receptors but reversibly activate the unchanged receptors. The researchers found this effect at a specific TM2 site in both glycine and GABAA receptor subunits.

"While other possible explanations cannot be fully ruled out, our results are extremely suggestive that the binding of alcohols and anesthetics in a protein cavity formed in part by a single amino acid is both necessary and sufficient to enhance receptor function," said Dr. Harris. "This indicates that anesthetics act by a mechanism closer to that of traditional receptor-mediated pharmacology than was previously thought. We believe this approach can help steer future research to define anesthetic binding sites on other brain proteins."
The NIAAA, the National Institute of General Medical Sciences, and the Texas Commission on Alcohol and Drug Abuse supported the research. For alcohol research information, please visit or telephone NIAAA Press (301-443-3860).

Reprints are available from the PNAS editorial office (tel. 202-334-2138). For additional information about the research, please telephone S. John Mihic, Ph.D. (tel. 512-232-7174) through July 31 or Adron Harris, Ph.D. (tel. 512-232-2514) after July 31.

NIH/National Institute on Alcohol Abuse and Alcoholism

Related Alcohol Articles from Brightsurf:

Alcohol use changed right after COVID-19 lockdown
One in four adults reported a change in alcohol use almost immediately after stay-at-home orders were issued: 14% reported drinking more alcohol and reported higher levels of stress and anxiety than those who did not drink and those whose use stayed the same.

Changes in hospitalizations for alcohol use disorder in US
Changes over nearly two decades in the rate of hospitalizations and in-hospital deaths from alcohol use disorder in the US were examined in this study.

Associations of alcohol consumption, alcohol-induced passing out with risk of dementia
The risk of future dementia associated with overall alcohol consumption and alcohol-induced loss of consciousness in a population of current drinkers was examined in this observational study with more than 131,000 adults.

New alcohol genes uncovered
Do you have what is known as problematic alcohol use?

Does estrogen influence alcohol use disorder?
A new study from researchers at the University of Illinois at Chicago shows that high estrogen levels may make alcohol more rewarding to female mice.

Sobering new data on drinking and driving: 15% of US alcohol-related motor vehicle fatalities involve alcohol under the legal limit
A new study in the American Journal of Preventive Medicine, published by Elsevier, found that motor vehicle crashes involving drivers with blood alcohol concentrations (BACs) below the legal limit of 0.08 percent accounted for 15% of alcohol-involved crash deaths in the United States.

Alcohol-induced deaths in US
National vital statistics data from 2000 to 2016 were used to examine how rates of alcohol-induced deaths (defined as those deaths due to alcohol consumption that could be avoided if alcohol weren't involved) have changed in the US and to compare the results by demographic groups including sex, race/ethnicity, age, socioeconomic status and geographic location.

Cuts in alcohol duty linked to 2000 more alcohol-related deaths in England
Government cuts to alcohol taxes have had dramatic consequences for public health, including nearly 2000 more alcohol-related deaths in England since 2012, according to new research from the University of Sheffield's School of Health and Related Research (ScHARR).

Integrated stepped alcohol treatment for people in HIV care improves both HIV & alcohol outcomes
Increasing the intensity of treatment for alcohol use disorder (AUD) over time improves alcohol-related outcomes among people with HIV, according to new clinical research supported by the National Institutes of Health.

The Lancet:Targets to reduce harmful alcohol use are likely to be missed as global alcohol intake increases
Increasing rates of alcohol use suggest that the world is not on track to achieve targets against harmful alcohol use, according to a study of 189 countries' alcohol intake between 1990-2017 and estimated intake up to 2030, published in The Lancet.

Read More: Alcohol News and Alcohol Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to