Effects of Huntington's disease mutation more complex than supposed

July 23, 2004

Competing theories about why brain cells die in Huntington's disease may not be competitors after all, according to a report published July 23, 2004, in the online edition of the Annals of Neurology (http://www.interscience.wiley.com/journal/ana).

Researchers report finding minor molecular abnormalities of the sort proposed by these different theories in cells throughout the brain and even in the skin. Yet only select groups of cells in a few movement centers of the brain are so vulnerable to these disruptions that they degenerate and die.

The results suggest that therapeutic strategies for Huntington's--as well as other neurodegenerative diseases such as Alzheimer's and Parkinson's--may have to be more complex than previously supposed.

Huntington's is an inherited, degenerative brain disease marked by movement abnormalities--involuntary, dance-like movements called "chorea" early in the illness and later a gradual loss of the ability to move muscles voluntarily--as well as psychiatric symptoms such as depression and mood swings.

Huntington's disease is caused by mutations in a single gene. The mutation leads to an abnormal form of the protein called huntingtin, which accumulates into toxic deposits inside nerve cells. Researchers have focused their efforts on understanding why mutant huntingtin accumulates and how it might damage brain cells.

One prominent theory notes that there is a breakdown in the clearance of abnormal proteins in Huntington's disease. Normally, a cellular "garbage" service called the ubiquitin-proteasome system (UPS) tags defective proteins and disassembles them. In Huntington's disease, the UPS does not appear to be fully functional, leaving defective proteins like huntingtin to accumulate.

However, researchers have also found other critical defects in the brain cells of Huntington's patients, including a scarcity of molecules called neurotrophins that nourish brain cells, and problems with mitochondria, the "power plants" that produce energy for cells.

In their study, Ole Isacson, MD, and his colleagues at Harvard University and McLean Hospital explored the relationships between these different cellular processes in different cells inside and outside the brain.

Surprisingly, first author Hyemyung Seo, PhD, and colleagues found that the UPS is not working properly in the skin cells of Huntington's disease either, yet there is no evidence that this harms the cells. Similarly, the researchers found abnormalities in neurotrophins and mitochondrial operation in many unaffected areas of the brain in Huntington's disease.

"It appears that only a few select groups of cells in the brain fail to adapt to this combination of problems. The degeneration of these cells leads to Huntington's disease," said Isacson.

An important implication of the study is that the mutant huntingtin protein does not just have one negative effect on brain cells, but several. This may mean that therapeutic strategies will have to take the form of combinations of drugs that address the different processes.

Mark Cookson, Ph.D, an expert on neurodegenerative disease at the National Institute on Aging in Bethesda, Maryland, believes this study will be of great interest to scientists who study diseases like Alzheimer's and Parkinson's, which also feature accumulations of abnormal proteins, problems in UPS "garbage collection," and the death of only certain vulnerable subgroups of cells.

"An obvious follow-up is to look at other neurodegenerative diseases. Presumably, there would be a pattern of cellular deficits parallel to, but distinct from those of Huntington's disease," said Cookson.
-end-
Article: "Generalized Brain and Skin Proteasome Inhibition in Huntington's Disease," Hyemyung Seo, PhD, Kai-Christian Sonntag, MD, PhD, and Ole Isacson, MD, Annals of Neurology; Published Online: July 23, 2004.

The Annals of Neurology, the preeminent neurological journal worldwide, is published by the American Neurological Association, the world's oldest and most prestigious neurological association. The 1,400 members of the ANA--selected from among the most respected academic neurologists and neuroscientists in North America and other countries--are devoted to furthering the understanding and treatment of nervous system disorders. For more information, visit www.aneuroa.org.

Wiley

Related Neurodegenerative Diseases Articles from Brightsurf:

Bringing drugs to the brain with nanoparticles to treat neurodegenerative diseases
Researchers from the Institut national de la recherche scientifique (INRS) have shown that nanoparticles could be used to deliver drugs to the brain to treat neurodegenerative diseases.

First 'pathoconnectome' could point toward new treatments for neurodegenerative diseases
Scientists from the John A. Moran Eye Center at the University of Utah have achieved another first in the field of connectomics, which studies the synaptic connections between neurons.

Unlocking the mystery of tau for treatment of neurodegenerative diseases
A team of researchers from various collaborating universities and hospitals in Japan has uncovered crucial molecular details regarding the activity of the ''tau'' protein, promising to revolutionize the therapy of tau-induced neurodegenerative diseases.

Investigational drug stops toxic proteins tied to neurodegenerative diseases
An investigational drug that targets an instigator of the TDP-43 protein, a well-known hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), may reduce the protein's buildup and neurological decline associated with these disorders, suggests a pre-clinical study from researchers at Penn Medicine and Mayo Clinic.

Inhibition of sphingolipid metabolism and neurodegenerative diseases
Disrupting the production of a class of lipids known as sphingolipids in neurons improved symptoms of neurodegeneration and increased survival in a mouse model.

How understanding the dynamics of yeast prions can shed light on neurodegenerative diseases
How understanding the dynamics of yeast prions can shed light on neurodegenerative diseases

New family of molecules to join altered receptors in neurodegenerative diseases
An article published in the Journal of Medicinal Chemistry shows a new family of molecules with high affinity to join imidazoline receptors, which are altered in the brain of those patients with neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's.

Examining diagnoses of stress-related disorders, risk of neurodegenerative diseases
Researchers investigated how stress-related disorders (such as posttraumatic stress disorder, adjustment disorder and stress reactions) were associated with risk for neurodegenerative diseases, including Alzheimer and Parkinson disease and amyotrophic lateral sclerosis (ALS), using data from national health registers in Sweden.

Toxic protein, linked to Alzheimer's and neurodegenerative diseases, exposed in new detail
The protein tau has long been implicated in Alzheimer's and a host of other debilitating brain diseases.

Study uncovers unexpected connection between gliomas, neurodegenerative diseases
New basic science and clinical research identifies TAU, the same protein studied in the development of Alzheimer's, as a biomarker for glioma development.

Read More: Neurodegenerative Diseases News and Neurodegenerative Diseases Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.