Nav: Home

UA organic semiconductor research could boost electronics

July 23, 2016

Most people aren't accustomed to hearing "organic" and "semiconductor" in the same sentence. But the words flow naturally for Erin Ratcliff, a University of Arizona assistant professor of materials science and engineering with a chemistry background.

Ratcliff is co-principal investigator on a new research project funded by the National Science Foundation to better understand and improve the viability of organic semiconductor materials, which are being used more and more in the manufacturing of digital display screens and new electronic devices.

The $590,000, three-year award teams Ratcliff with Jeanne Pemberton, a UA Regents' Professor of chemistry and biochemistry in the College of Science and principal investigator on the study.

"I'm incredibly excited to receive this award and to have Jeanne Pemberton as my co-investigator," said Ratcliff, who joined the UA faculty in 2014. "Her research and discoveries in analytical chemistry have led to major advancements in the field."

Longer-Lasting OLED Displays

Organic semiconductor materials, or OSCs, are carbon-based molecules and polymers with electrical conductivity. They are used to make organic light-emitting diode, or OLED, digital display screens for mobile phones, TVs and tablets. Future prospects for organic semiconductor materials include solar energy technologies and wearable devices.

The global market for all types of OLED displays is expected to grow from nearly $16 billion this year to $57 billion in 2026, according to market research firm IDTechEx. Ultrathin flexible OLED screen displays reflect the latest trend, with revenues forecast to grow from $2 billion to $18 billion by 2020.

Benefits of organic semiconductor materials over their inorganic counterparts, such as silicon, include greater transparency and flexibility, reduced cost and fewer adverse environmental effects.

However, the degradability of OSCs that makes them easier on the environment can also make them less stable and more likely to degrade in operando -- that is, when they are used in a device.

In their study, In Operando Characterization of Degradation Processes in Organic Semiconductor Materials, Ratcliff, Pemberton and UA graduate and undergraduate students in engineering and chemistry are using spectroscopy and other tools to measure and analyze OSCs exposed to different levels of light, heat, gases, moisture and electrical charges under varied conditions to better understand and manipulate the degradation process.

"Organic semiconductors hold exceptional promise in a number of existing and emerging electronics and other technologies," Ratcliff said. "But degradation is a major problem for using them commercially. This research project will set a foundation for better understanding and solving this complicated issue."

As a collaboration of chemists and engineers, the project stands apart from previous studies of OSC degradation, Ratcliff stressed.

"Chemistry researchers have approached the problem by looking only at molecular chemistry. Engineering researchers have focused on device functionality. By combining the skills, expertise and perspectives of chemists and engineers, our project will provide the most complete picture of OSC degradation in operando to date."

High-Powered Student Learning

The NSF project, which started July 1, 2016, is a boon for UA undergraduate and graduate students in engineering and science. Besides working in the Ratcliff and Pemberton labs, participating graduate students will have six-week internships at Next Energy Technologies Inc., a startup based in Santa Barbara, California, that is developing organic semiconductor materials for the solar industry. Ratcliff is also developing a new course, Organic Electronics, for upper-level undergraduate and graduate students at the UA.
-end-


University of Arizona College of Engineering

Related Semiconductor Articles:

Clemson researcher's novel MOF is potential next-gen semiconductor
Clemson professor Sourav Saha demonstrated a novel double-helical metal organic framework architecture in a partially oxidized form that conducts electricity, potentially making it a next-generation semiconductor.
A gold butterfly can make its own semiconductor skin
A nanoscale gold butterfly provides a more precise route for growing/synthesizing nanosized semiconductors that can be used in nano-lasers and other applications.
Scientists pioneer new generation of semiconductor neutron detector
In a new study, scientists have developed a new type of semiconductor neutron detector that boosts detection rates by reducing the number of steps involved in neutron capture and transduction.
Scientists see defects in potential new semiconductor
A research team has reported seeing, for the first time, atomic scale defects that dictate the properties of a new and powerful semiconductor.
Bending an organic semiconductor can boost electrical flow
Slightly bending semiconductors made of organic materials can roughly double the speed of electricity flowing through them and could benefit next-generation electronics such as sensors and solar cells, according to Rutgers-led research.
Paving a way to achieve unexplored semiconductor nanostructures
A research team of Ehime University paved a way to achieve unexplored III-V semiconductor nanostructures.
Clarification of a new synthesis mechanism of semiconductor atomic sheet
Researchers at Tohoku University in Japan succeeded in clarifying a new synthesis mechanism regarding transition metal dichalcogenides (TMD), which are semiconductor atomic sheets having thickness in atomic order.
Future of portable electronics -- Novel organic semiconductor with exciting properties
Organic semiconductors have advantages over inorganic semiconductors in several areas.
A new method for quantifying crystal semiconductor efficiency
Japanese scientists have found a new way to successfully detect the efficiency of crystal semiconductors.
X-rays reveal monolayer phase in organic semiconductor
An international team of researchers has investigated how the electrical properties of dihexyl-quarterthiophene thin films depend on their structure.
More Semiconductor News and Semiconductor Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.