Nav: Home

Build an ark? biologists discuss conservation prioritization

July 23, 2018

LOGAN, UTAH, USA -- Conservation biologists recognize a sobering reality.

"We're losing species left, right and center," says Utah State University scientist Will Pearse. "We call it the 'Noah's Ark Problem,' and we have to pick species to save. We can't save them all."

The biblical mariner seemed capable of building a vessel to accommodate mating pairs of all the world's creatures. The metaphor, today, however, would portray the harried Noah bailing water and valiantly trying to prioritize saving animals most beneficial for the future, as his boat rapidly sank.

Pearse, with colleagues Florent Mazel, Arne Mooers and Caroline Tucker of Simon Fraser University and the University of British Columbia; Marc Cadotte of the University of Toronto, Sandra Diaz of Argentina's National University of Cordoba, Giulio Valentino Dalla Riva of the University of British Columbia, Richard Grenyer of the University of Oxford, Fabien Leprieur of the University of Montpellier and David Mouillot of James Cook University, explore phylogenetic diversity as a metric of conservation prioritization in the July 23, 2018, issue of Nature Communications.

"Our paper tests a fundamental component of conservation biology we refer to as the 'phylogenetic gambit,'" says Pearse, assistant professor in USU's Department of Biology and the USU Ecology Center. "That is, conservation biologists often use species' evolutionary history - their phylogeny - to identify groups of species to save."

This idea is based on the assumption that preserving phylogenetic diversity among species preserves more functional diversity than selecting species to preserve by chance. Functional diversity is important, Pearse says, because it drives ecosystem health and productivity.

"Yet measuring the effectiveness of functional diversity is difficult," he says. "So using phylogenetic diversity as a surrogate for functional diversity has made conservation biology much easier and more effective."

In global datasets of mammals, birds and tropical fishes, the team demonstrates that, for the most part, the phylogenetic gambit holds. Preserving phylogenetic diversity preserves 18 percent more functional diversity than would be expected if species to save were selected at random.

"Worryingly, though, we found in some parts of the world, and in some groups of species, preserving phylogenetic diversity did worse or just the same as random chance," Pearse says. "Luckily, we identified the areas and reasons this was happening, which still makes this selection technique valid and valuable for conservation biologists."

The team's efforts, organized through an international working group initiated by Tucker and Mooers, were funded by the Synthesis Center for Biodiversity Sciences - "sDIV" - based in Leipzig, Germany.
-end-


Utah State University

Related Biology Articles:

Cell biology: Compartments and complexity
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists have taken a closer look at the subcellular distribution of proteins and metabolic intermediates in a model plant.
Cell biology: The complexity of division by two
Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have identified a novel protein that plays a crucial role in the formation of the mitotic spindle, which is essential for correct segregation of a full set of chromosomes to each daughter cell during cell division.
Cell biology: Dynamics of microtubules
Filamentous polymers called microtubules play vital roles in chromosome segregation and molecular transport.
The biology of color
Scientists are on a threshold of a new era of color science with regard to animals, according to a comprehensive review of the field by a multidisciplinary team of researchers led by professor Tim Caro at UC Davis.
Kinky biology
How and why proteins fold is a problem that has implications for protein design and therapeutics.
A new tool to decipher evolutionary biology
A new bioinformatics tool to compare genome data has been developed by teams from the Max F.
Biology's need for speed tolerates a few mistakes
In balancing speed and accuracy to duplicate DNA and produce proteins, Rice University researchers find evolution determined that speed is favored much more.
How to color a lizard: From biology to mathematics
Skin color patterns in animals arise from microscopic interactions among colored cells that obey equations discovered by Alan Turing.
Behavioral biology: Ripeness is all
In contrast to other members of the Drosophila family, the spotted-wing fly D. suzukii deposits its eggs in ripe fruits.
A systems biology perspective on molecular cytogenetics
Professor Henry Heng's team, from the medical school at Wayne State University, has published a perspective article titled A Systems Biology Perspective on Molecular Cytogenetics to address the issue.
More Biology News and Biology Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.