Nav: Home

Artificial intelligence saves water for water users associations

July 23, 2018

Agriculture uses 70% of the water in the world and this appears to be an upward trend regarding water needs. In this context in which the demand in other industry sectors is increasing as well and the effects of climate change influence ever-increasing water shortages, water saving measures have become an unavoidable challenge if we want to maintain the sector and preserve life.

This is the challenge taken on by Agronomy Department researcher Rafael González when developing a model able to predict in advance the water that each water user will need each day. Therefore, this tool came about from a drive to ally with water resource sustainability.

What is innovative about this model lies in the application of artificial intelligence techniques such as fuzzy logic, a system used to explain the behavior of decision making. In this case, it mixes variables that are easier to measure, like agroclimatic ones or the size of the plot of land to be watered, with other more complicated variables, like traditional methods in the area and holidays during watering season.

The FIS model (a fuzzy logic system) translates input variables (temperature, humidity, etc.) to the language its rules work by. By applying genetic algorithms, optimal curves are established for those input parameters, and via neural networks, the relationship between them is established. As a result, the applied irrigation depth is deduced to establish how many millimeters will be used by each water user.

This tool aims to curb the varying demand of water. By doing so, water users associations will be able to use their water supply in a more organized and accurate way, anticipate pump station adaptation issues and effectively organize maintenance and fault repair tasks without wasting water or affecting irrigated areas.

The prospect of preempting water demand also allows for hiring staff and contracting electric service only when strictly necessary, optimizing these resources while also being cost-effective and environmentally friendly.

How is this data obtained?

The creation of this tool translates into a change in the management of water users associations, based on knowledge and information. In the past, this management was primarily based on intuition or what had been done other years. Instead, now these associations can rely on accurate information.

But where does this information come from? In this case, to determine how the different use for different crops can influence the accuracy of the model, Rafael González used data from a remote control system of a Canal del Zújar water users association for corn, rice and tomato crops. In this way, the feasibility of remote control and telemetry systems are evident.

To date, the data generated by these systems were used basically to charge each user in the network for how much water they used, whereas with this system all the measurements generated are used to forecast. Therefore, the model that González came up with is cause for reconsideration of the measuring systems used by water users associations, satisfying not only skilled workers and managerment at water users associations but also innovative companies in the field of telemetry. All of this is done while keeping in mind the worldwide effort to save water.
-end-
References:

González Perea, R, Camacho Poyato, E., Montesinos, P., Rodríguez-Díaz, J.A., (2018) Prediction of applied irrigation depths at farm level using artificial intelligence techniques. Agricultural Water Management, 206, pp 229-240. https://doi.org/10.1016/j.agwat.2018.05.019

University of Córdoba

Related Water Articles:

Source water key to bacterial water safety in remote Northern Australia
In the wet-dry topics of Australia, drinking water in remote communities is often sourced from groundwater bores.
Our water cycle diagrams give a false sense of water security
Pictures of the earth's water cycle used in education and research throughout the world are in urgent need of updating to show the effects of human interference, according to new analysis by an international team of hydrology experts.
Water management helped by mathematical model of fresh water lenses
In this paper, the homeostasis of water lenses was explained as an intricate interaction of the following physical factors: infiltration to the lens from occasional (sporadic) rains, permanent evaporation from the water table, buoyancy due to a density contrast of the fresh and saline water, and the force of resistance to water motion from the dune sand.
The age of water
Groundwater in Egypt's aquifers may be as much as 200,000 years old and that's important to know as officials in that country seek to increasing the use of groundwater, especially in the Eastern Desert, to mitigate growing water stress and allow for agricultural projects.
Water that never freezes
Can water reach minus 263 degrees Celsius without turning into ice?
Peanuts that do more with less water
Researchers are studying peanut varieties to find a 'water conservation' trait.
Molecular adlayer produced by dissolving water-insoluble nanographene in water
Even though nanographene is insoluble in water and organic solvents, Kumamoto University and Tokyo Institute of Technology researchers have found a way to dissolve it in water.
Water-worlds are common: Exoplanets may contain vast amounts of water
Scientists have shown that water is likely to be a major component of those exoplanets (planets orbiting other stars) which are between two to four times the size of Earth.
Artificial intelligence saves water for water users associations
A research group at the University of Cordoba has developed a model based on artificial intelligence techniques that can predict how much water each water user will use.
In desert trials, next-generation water harvester delivers fresh water from air
UC Berkeley scientists who last year built a prototype harvester to extract water from the air using only the power of the sun have scaled up the device to see how much water they can capture in arid conditions in Arizona.
More Water News and Water Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab