Nav: Home

An overview of healthcare monitoring by flexible electronics

July 23, 2018

Over the past two decades, intelligentization and informatization have become increasingly popular in the development of science and technology. A large number of microsensors and actuators have been integrated into all aspects of electronic devices. By achieving flexibility and stretchability, microelectronics can greatly expand the current application scenarios. The main advantage of flexible electronics is its ability to fit into a variety of complex surfaces, such as the human skin, which makes it possible to manufacture biosensors or wearable devices for human healthcare. According to Transparency Market Research, the global biosensors market was valued at $9.9 billion in 2011, and it is expected to reach as high as $18.9 billion by 2018.

The human body is a complex system where any pathology can exhibit appropriate physiological signals. Physiological measurements and stimulation techniques require electronic devices that can conform to the curvilinear surfaces of biological tissues and accommodate their large deformations. Scholars at the Chinese Academy of Sciences and Dalian University of Technology review the recent advances in flexible and stretchable electronics that are currently used for electronic skins and biological devices in human healthcare. The materials, structures, and functionalities of a variety of biological sensors are introduced. The discussions provide potential ideas for commercial applications. Some perspectives on future research opportunities have also been included.

"With an improved understanding of biosensors and the architectures of flexible and stretchable electronic devices, it will be possible to develop more functional and powerful integrated electronic systems," wrote the four researchers. "This will improve the public health by bringing about revolutionary changes in long-term health monitoring devices."
-end-
More details can be found in the article "An overview of healthcare monitoring by flexible electronics" published in SCIENCE CHINA Physics, Mechanics & Astronomy, 2018, 61(9): 094601.

This research was funded by the National Natural Science Foundation of China (Grant Nos. 11572323, 11772331, and 11302038).

See the article:

JianQiao Hu, Rui Li, Yuan Liu, and YeWang Su, An overview of healthcare monitoring by flexible electronics, Sci. China-Phys. Mech. Astron. 61, 094601 (2018)

http://engine.scichina.com/publisher/scp/journal/SCPMA/61/9/10.1007/s11433-018-9239-9?slug=full%20texthttps://doi.org/10.1007/s11433-018-9239-9

Science China Press

Related Technology Articles:

April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.
Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.
Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.
Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.
The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).
AI technology could help protect water supplies
Progress on new artificial intelligence (AI) technology could make monitoring at water treatment plants cheaper and easier and help safeguard public health.
Transformative technology
UC Davis neuroscientists have developed fluorescence sensors that are opening a new era for the optical recording of dopamine activity in the living brain.
Do the elderly want technology to help them take their medication?
Over 65s say they would find technology to help them take their medications helpful, but need the technology to be familiar, accessible and easy to use, according to research by Queen Mary University of London and University of Cambridge.
Technology detecting RNase activity
A KAIST research team of Professor Hyun Gyu Park at Department of Chemical and Biomolecular Engineering developed a new technology to detect the activity of RNase H, a RNA degrading enzyme.
Taking technology to the next level
Physicists from the ARC Centre of Excellence for Ultrahigh bandwidth Devices for Optical Systems (CUDOS) developed a new hybrid integrated platform, promising to be a more advanced alternative to conventional integrated circuits.
More Technology News and Technology Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.