Nav: Home

An overview of healthcare monitoring by flexible electronics

July 23, 2018

Over the past two decades, intelligentization and informatization have become increasingly popular in the development of science and technology. A large number of microsensors and actuators have been integrated into all aspects of electronic devices. By achieving flexibility and stretchability, microelectronics can greatly expand the current application scenarios. The main advantage of flexible electronics is its ability to fit into a variety of complex surfaces, such as the human skin, which makes it possible to manufacture biosensors or wearable devices for human healthcare. According to Transparency Market Research, the global biosensors market was valued at $9.9 billion in 2011, and it is expected to reach as high as $18.9 billion by 2018.

The human body is a complex system where any pathology can exhibit appropriate physiological signals. Physiological measurements and stimulation techniques require electronic devices that can conform to the curvilinear surfaces of biological tissues and accommodate their large deformations. Scholars at the Chinese Academy of Sciences and Dalian University of Technology review the recent advances in flexible and stretchable electronics that are currently used for electronic skins and biological devices in human healthcare. The materials, structures, and functionalities of a variety of biological sensors are introduced. The discussions provide potential ideas for commercial applications. Some perspectives on future research opportunities have also been included.

"With an improved understanding of biosensors and the architectures of flexible and stretchable electronic devices, it will be possible to develop more functional and powerful integrated electronic systems," wrote the four researchers. "This will improve the public health by bringing about revolutionary changes in long-term health monitoring devices."
-end-
More details can be found in the article "An overview of healthcare monitoring by flexible electronics" published in SCIENCE CHINA Physics, Mechanics & Astronomy, 2018, 61(9): 094601.

This research was funded by the National Natural Science Foundation of China (Grant Nos. 11572323, 11772331, and 11302038).

See the article:

JianQiao Hu, Rui Li, Yuan Liu, and YeWang Su, An overview of healthcare monitoring by flexible electronics, Sci. China-Phys. Mech. Astron. 61, 094601 (2018)

http://engine.scichina.com/publisher/scp/journal/SCPMA/61/9/10.1007/s11433-018-9239-9?slug=full%20texthttps://doi.org/10.1007/s11433-018-9239-9

Science China Press

Related Technology Articles:

The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).
AI technology could help protect water supplies
Progress on new artificial intelligence (AI) technology could make monitoring at water treatment plants cheaper and easier and help safeguard public health.
Transformative technology
UC Davis neuroscientists have developed fluorescence sensors that are opening a new era for the optical recording of dopamine activity in the living brain.
Do the elderly want technology to help them take their medication?
Over 65s say they would find technology to help them take their medications helpful, but need the technology to be familiar, accessible and easy to use, according to research by Queen Mary University of London and University of Cambridge.
Technology detecting RNase activity
A KAIST research team of Professor Hyun Gyu Park at Department of Chemical and Biomolecular Engineering developed a new technology to detect the activity of RNase H, a RNA degrading enzyme.
Taking technology to the next level
Physicists from the ARC Centre of Excellence for Ultrahigh bandwidth Devices for Optical Systems (CUDOS) developed a new hybrid integrated platform, promising to be a more advanced alternative to conventional integrated circuits.
How technology use affects at-risk adolescents
More use of technology led to increases in attention, behavior and self-regulation problems over time for adolescents already at risk for mental health issues, a new study from Duke University finds.
Hold-up in ventures for technology transfer
The transfer of technology brings ideas closer to commercialization. The transformation happens in several steps, such as invention, innovation, building prototypes, production, market introduction, market expansion, after sales services.
The ultimate green technology
Imagine patterning and visualizing silicon at the atomic level, something which, if done successfully, will revolutionize the quantum and classical computing industry.
New technology detects COPD in minutes
Pioneering research by Professor Paul Lewis of Swansea University's Medical School into one of the most common lung diseases in the UK, Chronic Obstructive Pulmonary Disease, has led to the development of a new technology that can quickly and easily diagnose and monitor the condition.
More Technology News and Technology Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.