Nav: Home

Surprising findings on the physics of water entry could lead to smarter design of ships

July 23, 2018

BROOKLYN, New York, Monday, July 23, 2018--Countless times a day, seabirds dive-catch prey from the ocean, boats enter the water from dry land, and seaplanes touch down gently amid the waves. The phenomenon of objects entering water is commonplace, yet a full understanding of the physics of water entry remains elusive, especially as it pertains to instances where a solid object enters a body of water that contains other solid objects, such as a gull diving into a rocky patch of sea.

A team of researchers at the NYU Tandon School of Engineering is exploring this relatively untouched area of research and has published a series of surprising findings that may lead to strategies for minimizing the strain of water entry on marine vessels, seaplanes, and space-crew capsules designed for water landing.

"Many studies of water entry overlook the presence of solid, stationary objects like ice or rocks in the water, and it is clear that these items can affect objects entering the water and change the physics of impact," said Maurizio Porfiri, professor of mechanical and aerospace engineering at NYU Tandon and lead author of the paper "Solid Obstacles Can Reduce Hydrodynamic Loading During Water Entry," which appears in the journal Physical Review Fluids. Porfiri's collaborators include NYU Tandon Adjunct Faculty Member Ghania Benbelkacem, in the Department of Mechanical and Aerospace Engineering, and Mohammad Jalalisendi, a recent doctoral degree graduate in Porfiri's group.

Porfiri and his collaborators in the Dynamical Systems Laboratory created an experiment using a solid wedge plunging into a tank of water containing a neutrally buoyant cylinder. Sensors in the setup measured acceleration, pressure, and depth, and the team used particle image velocimetry to visualize flow and measure the speed of water jets produced by the wedge as it hit the water. Analyses revealed that the cylinder's presence in the water dramatically changed the physics of impact on the wedge in unexpected ways.

To the researchers' surprise, they noted a decrease in pressure in the pile-up -- the region of the fluid where a high-speed jet is produced as the wedge lands-- on the side of the wedge closest to the cylinder. Porfiri and the team attributed this decrease to the cylinder confining fluid on that side, so that less water was displaced upon impact. However, in a contradictory finding, the team noted an increase in pressure toward the wedge's keel, indicating a rich, complex effect from the cylinder. Further studies are needed to reconcile these conflicting findings, but the researchers note the importance of continuing to explore the interplay between stationary items in water and objects entering the water.

"It is clear that there are sympathetic interactions between these objects, and as we gain a better understanding of them, it may lead to designs and materials that mitigate some of the strain on marine vessels that travel in occluded waters, especially those exploring and navigating polar regions," said Porfiri.
-end-
This research was supported by a grant from the Solid Mechanics Program of the Office of Naval Research, with Dr. Y. D. S. Rajapakse as the program manager.

About the New York University Tandon School of Engineering

The NYU Tandon School of Engineering dates to 1854, the founding date for both the New York University School of Civil Engineering and Architecture and the Brooklyn Collegiate and Polytechnic Institute (widely known as Brooklyn Poly). A January 2014 merger created a comprehensive school of education and research in engineering and applied sciences, rooted in a tradition of invention and entrepreneurship and dedicated to furthering technology in service to society. In addition to its main location in Brooklyn, NYU Tandon collaborates with other schools within NYU, one of the country's foremost private research universities, and is closely connected to engineering programs at NYU Abu Dhabi and NYU Shanghai. It operates Future Labs focused on start-up businesses in downtown Manhattan and Brooklyn and an award-winning online graduate program. For more information, visit http://engineering.nyu.edu.

NYU Tandon School of Engineering

Related Engineering Articles:

Engineering a new cancer detection tool
E. coli may have potentially harmful effects but scientists in Australia have discovered this bacterium produces a toxin which binds to an unusual sugar that is part of carbohydrate structures present on cells not usually produced by healthy cells.
Engineering heart valves for the many
The Wyss Institute for Biologically Inspired Engineering and the University of Zurich announced today a cross-institutional team effort to generate a functional heart valve replacement with the capacity for repair, regeneration, and growth.
Geosciences-inspired engineering
The Mackenzie Dike Swarm and the roughly 120 other known giant dike swarms located across the planet may also provide useful information about efficient extraction of oil and natural gas in today's modern world.
Engineering success
Academically strong, low-income would-be engineers get the boost they need to complete their undergraduate degrees.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
Engineering a better biofuel
The often-maligned E. coli bacteria has powerhouse potential: in the lab, it has the ability to crank out fuels, pharmaceuticals and other useful products at a rapid rate.
Pascali honored for contributions to engineering education
Raresh Pascali, instructional associate professor in the Mechanical Engineering Technology Program at the University of Houston, has been named the 2016 recipient of the Ross Kastor Educator Award.
Scaling up tissue engineering
A team at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A.
Engineering material magic
University of Utah engineers have discovered a new kind of 2-D semiconducting material for electronics that opens the door for much speedier computers and smartphones that also consume a lot less power.
Engineering academic elected a Fellow of the IEEE
A University of Bristol academic has been elected a Fellow of the world's largest and most prestigious professional association for the advancement of technology.

Related Engineering Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".