Nav: Home

Gene study pinpoints superbug link between people and animals

July 23, 2018

Scientists have shed light on how a major cause of human and animal disease can jump between species, by studying its genes.

The findings reveal fresh insights into how new disease-causing strains of the bacteria - called Staphylococcus aureus - emerge.

Experts say the research could help improve the use of antibiotics and design better strategies for limiting the spread of disease.

S. aureus bacteria usually live harmlessly in our noses. If the bacteria get into a cut, however, they can cause infections that, in rare instances, can be deadly.

Antibiotic resistant strains of the bacteria, such as MRSA, are a major cause of hospital acquired infections.

The bacteria is also a major burden for the agricultural industry as it causes diseases such as mastitis in cows and skeletal infections in broiler chickens.

A team led by the University of Edinburgh's Roslin Institute analysed the entire genetic make-up of more than 800 strains of S. aureus that were isolated from people and animals.

The researchers sought to investigate the evolutionary history of the bacteria and key events that had allowed it to jump between species.

They found that humans were the likely original host for the bacteria. The first strains capable of infecting livestock emerged around the time animals were first domesticated for farming.

Cows have been a source of strains that now cause infections in human populations worldwide, the study found. The researchers say this highlights the importance of disease surveillance in people and animals in order to spot strains that could cause major epidemics.

The analysis revealed that each time the bacteria jumps species, it acquires new genes that enable it to survive in its new host. In some cases, these genes can also confer resistance to commonly used antibiotics.

Genes linked to antibiotic resistance are unevenly distributed among strains that infect humans compared with those that infect animals, the study found. The researchers say this reflects the distinct practices linked to antibiotic usage in medicine and agriculture.

Investigating how the bacteria are affected by genetic changes that occur after it jumps species could reveal opportunities to develop new anti-bacterial therapies, the researchers say.

It could also help to inform better strategies for managing infections to reduce the risk of transmission to people, and slow the emergence of antibiotic resistance.

The study, published in Nature Ecology & Evolution, involved researchers from the Universities of Edinburgh and Cambridge and the Wellcome Sanger Institute.
-end-
The Roslin Institute receives strategic funding from the Biotechnology and Biological Sciences Research Council.

Professor Ross Fitzgerald, Group Leader at the University of Edinburgh's Roslin Institute and Director of Edinburgh Infectious Disease, said: "This study has been a real collaborative effort between numerous research groups in the UK and beyond. Our findings provide a framework to understand how some bacteria can cause disease in both humans and animals and could ultimately reveal novel therapeutic targets."

University of Edinburgh

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".