Nav: Home

Study provides insight into how dying neurons control eating behaviors of the brain microglia

July 23, 2018

A new Mount Sinai study, published July 23 in the journal Nature Neuroscience, provides important insight into how microglia, cells that form a branch of the immune system inside the brain, go about their job of clearing out dying and non-functional neurons - and how they sometimes mistakenly attack healthy neurons, an event that can play a role in neurodegenerative diseases like Alzheimer's and Parkinson's diseases.

The functionality of neurons, highly sensitive cells, begins to decline as a person ages. When neurons die, they don't die unnoticed; they activate their neighbors, the microglia. The ability to clear biological debris makes microglia both a friend and foe of the brain. Microglia are friends as long as they clear the dying neurons but do not affect healthy cells, but foes when the reverse happens.

The new research conducted at the Icahn School of Medicine at Mount Sinai revealed that microglia clearance activity in different brain regions goes hand in hand with the natural rate of neuronal degeneration/death. The research team also discovered that the highly calibrated response of microglia to neuronal cell death is governed by the gene regulatory protein complex polycomb repressive complex 2 (PRC2), which silences the microglia clearing program in the absence of dying neurons, and that if PRC2 is inactivated, the microglia can mistakenly attack healthy neurons.

Specifically, the research team found that microglia in the cerebellum, a brain region important in regulating motor learning and balance, display a distinct clearance phenotype characterized by the engulfment and catabolism of cells and cellular debris. This feature of cerebellar microglia matches the existence of cell death in the cerebellum, where neuronal numbers start declining during adolescence. Conversely, they found microglia in the striatum and cortex display a homeostatic surveillance phenotype, aligned with low rates of neuronal death in those brain regions. These brain-region-specific differences in neuronal degeneration suggest the possibility that microglia may fine-tune their clearance activity in accordance with the load of cell debris.

"Our study shows that microglia in different regions of the brain display different capacities to 'eat' or remove dying cells," says Anne Schaefer, PhD, Associate Professor of Neuroscience and Psychiatry and Co-Director of the Center for Glial Biology at the Icahn School of Medicine at Mount Sinai. "We found that if the eating behavior is turned on inappropriately in the absence of cell death, it can impair the function of adjacent neurons and lead to cellular changes frequently associated with neurodegenerative diseases such as Alzheimer's disease. The study also provides evidence that PRC2, a protein complex that silences a given gene's expression, restricts the expression of genes that support clearance activity. "

The team found that the non-eating phenotype of microglia in the striatum and cortex is established with the help of PRC2, which keeps genes involved in eating at bay. But if PRC2 is inactivated, the microglia's eating behavior is switched on aberrantly in the absence of dying cells or debris. With nothing left to clear, microglia turn to healthy neurons and induce changes frequently associated with neurodegenerative diseases.

"Our research indicates that microglia eating behavior requires tight regulation and could be dangerous to neurons if there are factors that interfere with these mechanisms." says Pinar Ayata, PhD, Postdoctoral Fellow in the Departments of Neuroscience and Psychiatry at the Icahn School of Medicine at Mount Sinai. "Our work may help to shed light on how environmental factors that can deregulate epigenetic mechanisms, such as stress and changes in metabolism, may contribute to neurodegenerative disorders."

"There is a possibility that regional differences in microglia function may underlie some of the known brain region-specific susceptibilities to neurodegenerative disorders," adds Dr. Schaefer. "It also raises the possibility that 'training' microglia eating behaviors may help to establish a condition that supports microglia clearance activity without damaging neurons."
-end-
About the Mount Sinai Health System

The Mount Sinai Health System is New York City's largest integrated delivery system encompassing seven hospital campuses, a leading medical school, and a vast network of ambulatory practices throughout the greater New York region. Mount Sinai's vision is to produce the safest care, the highest quality, the highest satisfaction, the best access and the best value of any health system in the nation. The System includes approximately 6,600 primary and specialty care physicians; 10 joint-venture ambulatory surgery centers; more than 140 ambulatory practices throughout the five boroughs of New York City, Westchester, Long Island, and Florida; and 31 affiliated community health centers. The Icahn School of Medicine is one of three medical schools that have earned distinction by multiple indicators: ranked in the top 20 by U.S. News & World Report's "Best Medical Schools", aligned with a U.S. News & World Report's "Honor Roll" Hospital, No. 13 in the nation for National Institutes of Health funding, and among the top 10 most innovative research institutions as ranked by the journal Nature in its Nature Innovation Index. This reflects a special level of excellence in education, clinical practice, and research. The Mount Sinai Hospital is ranked No. 18 on U.S. News & World Report's "Honor Roll" of top U.S. hospitals; it is one of the nation's top 20 hospitals in Cardiology/Heart Surgery, Diabetes/Endocrinology, Gastroenterology/GI Surgery, Geriatrics, Nephrology, and Neurology/Neurosurgery, and in the top 50 in four other specialties in the 2017-2018 "Best Hospitals" issue. Mount Sinai's Kravis Children's Hospital also is ranked in five out of ten pediatric specialties by U.S. News & World Report. The New York Eye and Ear Infirmary of Mount Sinai is ranked 12th nationally for Ophthalmology and 50th for Ear, Nose, and Throat, while Mount Sinai Beth Israel, Mount Sinai St. Luke's and Mount Sinai West are ranked regionally. For more information, visit http://www.mountsinai.org/, or find Mount Sinai on Facebook, Twitter and YouTube.

The Mount Sinai Hospital / Mount Sinai School of Medicine

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#518 With Genetic Knowledge Comes the Need for Counselling
This week we delve into genetic testing - for yourself and your future children. We speak with Jane Tiller, lawyer and genetic counsellor, about genetic tests that are available to the public, and what to do with the results of these tests. And we talk with Noam Shomron, associate professor at the Sackler School of Medicine at Tel Aviv University, about technological advancements his lab has made in the genetic testing of fetuses.