Nav: Home

Acidic oceans cause fish to lose their sense of smell

July 23, 2018

When carbon dioxide is absorbed by seawater carbonic acid is formed, making the water more acidic. Since the Industrial Revolution, oceanic CO2 has risen by 43% and is predicted to be two and a half times current levels by the end of this century.

Fish use their sense of smell (olfaction) to find food, safe habitats, avoid predators, recognize each other and find suitable spawning grounds. A reduction in their ability to smell therefore can compromise these essential functions for their survival.

The new study provides evidence that economically important species will be affected by elevated CO2, leaving fish vulnerable because it affects their ability to detect odours.

University of Exeter researcher Dr Cosima Porteus, who led the study, said: "Our study is the first to examine the impact of rising carbon dioxide in the ocean on the olfactory system of fish. First we compared the behaviour of juvenile sea bass at CO2 levels typical of today's ocean conditions, and those predicted for the end of the century. Sea bass in acidic waters swam less and were less likely to respond when they encountered the smell of a predator. These fish were also more likely to "freeze" indicating anxiety."

Experts at the University of Exeter, in collaboration with scientists from the Centre of Marine Sciences (CCMar, Faro, Portugal) and the Centre for Environment, Fisheries and Aquaculture Science (Cefas), also tested the ability of the sea bass' nose to detect different smells. They did this by recording the activity in the nervous system while their nose was exposed to water with different levels of CO2 and acidity.

Dr Porteus added: "The sense of smell of sea bass was reduced by up to half in sea water that was acidified with a level of CO2 predicted for the end of the century. Their ability to detect and respond to some odours associated with food and threatening situations was more strongly affected than for other odours. We think this is explained by acidified water affecting how odorant molecules bind to olfactory receptors in the fish's nose, reducing how well they can distinguish these important stimuli.

Scientists also studied how the elevated CO2 and acidity in the water affected the genes being expressed in the nose and brain of sea bass and found evidence for altered expression of many of those involved in sensing smells and processing of this information. Although only sea bass were used in the study, the processes involved in the sense of smell are common to many aquatic species and therefore the findings should apply very broadly.

Dr Porteus said: "I wanted to examine if fish had any ability to compensate for this reduced sense of smell, but found that instead of increasing the expression of genes for smell receptors in their nose they did the opposite, exacerbating the problem."

Prof Rod Wilson from the University of Exeter also commented on the plight for fish in a higher CO2 future world: "Our intriguing results show that CO2 impacts the nose of the fish directly. This will be in addition to the impact of CO2 on their central nervous system function suggested by others previously, which proposed an impaired processing of information in the brain itself. It is not yet known how rapidly fish will be able to overcome these problems as CO2 rises in the future. However, having to cope with two different problems caused by CO2, rather than just one, may reduce their ability to adapt or how long this will take."
-end-
Near-future carbon dioxide levels impair the olfactory system of a marine fish is published in the journal Nature Climate Change.

University of Exeter

Related Nervous System Articles:

Discovery concerning the nervous system overturns a previous theory
It appears that when our nervous system is developing, only the most viable neurons survive, while immature neurons are weeded out and die.
Nanocapsule reaches cancer that has spread to central nervous system in mice
Researchers developed a drug delivery system that can break through the blood-brain barrier in mice.
Autonomic nervous system appears to function well regardless of mode of childbirth
'In a low-risk group of babies born full-term, the autonomic nervous system and cortical systems appear to function well regardless of whether infants were exposed to labor prior to birth,' says Sarah B.
First step to induce self-repair in the central nervous system
Injured axons instruct Schwann cells to build specialized actin spheres to break down and remove axon fragments, thereby starting the regeneration process.
First complete wiring diagram of an animal's nervous system
In a study published online today in Nature, researchers at Albert Einstein College of Medicine describe the first complete wiring diagram of the nervous system of an animal, the roundworm Caenorhabditis elegans, used by scientists worldwide as a model organism.
Scientists unlock new role for nervous system in regeneration
Biologists have developed a computational model of flatworm regeneration to answer an important question in regeneration research - what are the signals that determine the rebuilding of specific anatomical structures?
Study identifies new approach to repairing damaged peripheral nervous system
A new understanding of cell migration may eventually help in the treatment of neurodegenerative diseases -- and even allow children to 'get out of their wheelchairs and live an enhanced quality of life.'
Research gives new insight into the evolution of the nervous system
Pioneering research has given a fascinating fresh insight into how animal nervous systems evolved from simple structures to become the complex network transmitting signals between different parts of the body.
Researchers solve mystery of how ALL enters the central nervous system
A research team led by Duke Cancer Institute scientists has found that this blood cancer infiltrates the central nervous system not by breaching the blood-brain barrier, but by evading the barrier altogether.
The VIPs of the nervous system
Biologists at Washington University in St Louis unlocked a cure for jet lag in mice by activating a small subset of the neurons involved in setting daily rhythms.
More Nervous System News and Nervous System Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.