Nav: Home

Scientists generate key life event in artificial mouse 'embryo' created from stem cells

July 23, 2018

The creation of artificial embryos has moved a step forward after an international team of researchers used mouse stem cells to produce artificial embryo-like structures capable of 'gastrulation', a key step in the life of any embryo.

The team, led by Professor Magdalena Zernicka-Goetz at the University of Cambridge, previously created a much simpler structure resembling a mouse embryo in culture, using two types of stem cells - the body's 'master cells' - and a 3D scaffold on which they can grow.

Now, in a study published today in Nature Cell Biology, Professor Zernicka-Goetz and colleagues have developed the embryo-like structures further, using not just two but three types of stem cells which let them reconstruct a process known as gastrulation, an essential step in which the embryonic cells being self-organising into the correct structure for an embryo to form.

Once a mammalian egg has been fertilised by a sperm, it divides multiple times to generate a small, free-floating ball comprising three types of stem cells. At the stage of development known as the 'blastocyst' stage, the particular stem cells that will eventually make the future body - the embryonic stem cells (ESCs) - cluster together inside the embryo towards one end. The other two types of stem cell in the blastocyst are the extra-embryonic trophoblast stem cells (TSCs), which will form the placenta, and primitive endoderm stem cells (PESCs) that will form the yolk sac, ensuring that the foetus's organs develop properly and providing essential nutrients.

In March 2017, Professor Zernicka-Goetz and colleagues published a study that described how, using a combination of genetically-modified mouse ESCs and TSCs, together with a 3D 'jelly' scaffold known as an extracellular matrix, they were able to grow a structure capable of assembling itself and whose development and architecture very closely resembled the natural embryo. There was a remarkable degree of communication between the two types of stem cell: in a sense, the cells were telling each other where in the embryo to place themselves.

However, a key step in the life of the embryo - gastrulation, described by the eminent biologist Lewis Wolpert as "truly the most important time in your life" - was missing. Gastrulation is the point at which the embryo transforms from being a single layer to three layers: an inner layer (endoderm), middle layer (mesoderm) and outer layer (endoderm), determining which tissues or organs the cells will then develop into.

"Proper gastrulation in normal development is only possible if you have all three types of stem cell. In order to reconstruct this complex dance, we had to add the missing third stem cell," says Professor Zernicka-Goetz. "By replacing the jelly that we used in earlier experiments with this third type of stem cell, we were able to generate structures whose development was astonishingly successful."

By adding the PESCs, the team was able to see their 'embryo' undergo gastrulation, organising itself into the three body layers that all animals have. The timing, architecture and patterns of gene activity reflected that of natural embryo development.

"Our artificial embryos underwent the most important event in life in the culture dish," adds Professor Zernicka-Goetz. "They are now extremely close to real embryos. To develop further, they would have to implant into the body of the mother or an artificial placenta."

The researchers say they should now be in a position to better understand how the three stem cell types interact to enable the embryo to develop, by experimentally altering biological pathways in one cell type and seeing how this affects the behaviour of one, or both, of the other cell types.

"We can also now try to apply this to the equivalent human stem cell types and so study the very earliest events in human embryo development without actually having to use natural human embryos," says Professor Zernicka-Goetz.

By applying these studies side-by-side, it should be possible to learn a great deal about the fundamental aspects of the first stages of mammalian development. In fact, such comparisons should enable scientists to study events that happen beyond day 14 in human pregnancies, but without using 14-day-old human embryos; UK law permits embryos to be studied in the laboratory only up to this period.

"The early stages of embryo development are when a large proportion of pregnancies are lost and yet it is a stage that we know very little about," says Professor Zernicka-Goetz. "Now we have a way of simulating embryonic development in the culture dish, so it should be possible to understand exactly what is going on during this remarkable period in an embryo's life, and why sometimes this process fails."
The research was funded by the European Research Council and Wellcome.

Researcher Profile: Dr Berna Sozen

Dr Berna Sozen is living the dream.

Originally from Turkey, she came to Cambridge to join Professor Magdalena Zernicka-Goetz's team. "During my MSc, as a young passionate researcher-to-be, I was fascinated by her research, which resolves the puzzles in early mammalian life," she says. "My dream has come true and I have spent several years at Cambridge now."

Understanding the very early stages of embryo development is important because it may help explain why a significant number of human pregnancies fail at around the time the embryo implants into the wall of the uterus. Key events after implantation stage of embryo development are largely inaccessible to science because they occur in the 'black box' of the human uterus even before most women know that they are pregnant.

The research is not always easy, of course - her work with Professor Zernicka-Goetz, growing embryo-like structures from mouse stem cells, really is at the cutting-edge of research - but it can be hugely satisfying.

"Observing these self-developing embryo-like structures under the microscope is so exciting that I do not care even if there is a need to be in lab in the middle of night!" she says. "I still clearly remember the moment that I and my co-author saw these structures for the first time. It was a breath-taking moment. Those moments are what we live for in science."

Berna is helping contribute to the immense legacy that Cambridge has to offer in embryology and stem cell research.

"I work in the same building where Nobel Laureate Bob Edwards succeeded in fertilising a human egg in vitro. Another Nobel Laureate Sir Martin Evans was the first to culture mouse embryonic stem cells and cultivate them in a laboratory at University of Cambridge," she says. "These works revolutionised treatments for fertility and laid the foundations for human stem cell research. These great scientists paved the way for Magdalena's pioneering research in embryology. I feel I couldn't have been in any better place for my research than this."

The beautiful images of early embryos produced by Professor Zernicka-Goetz's team no doubt help inspire Berna's other passion in life, photography. "Colours and patterns become glamorous behind the lens and I always find the beauty in everything," she says. "I think this makes me a better biologist!"

Sozen, B et al. Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo structures. Nature Cell Biology; 23 Jul 2018; DOI: 10.1038/s41556-018-0147-7

University of Cambridge

Related Stem Cells Articles:

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
TSRI researchers identify gene responsible for mesenchymal stem cells' stem-ness'
Researchers at The Scripps Research Institute recently published a study in the journal Cell Death and Differentiation identifying factors crucial to mesenchymal stem cell differentiation, providing insight into how these cells should be studied for clinical purposes.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at