'Hijacked' cell response to stress reveals promising drug targets for blood cancer

July 23, 2018

A signaling pathway that helps promote normal cell growth worsens a form of leukemia by taking control of another pathway better known for protecting cells from biological stress, a new study shows.

The discovery that the NOTCH1 pathway takes control of heat shock transcription factor 1 (HSF1) signaling in T cell acute lymphoblastic leukemia, or T-ALL, suggests that blocking one or more genes in the HSF1 pathway could represent a new approach in treating the aggressive disease, researchers say.

Moreover, the NYU School of Medicine scientists who led the latest research efforts say that because an experimental anticancer drug is already in development against one of these targets, heat shock protein 90 (HSP90), the new study identifies the subset of T-ALL patients most likely to benefit from the new therapy.

Reporting in the journal Nature Medicine online July 23, researchers say their study is the first to directly link activation of HSF1, which is critical to the production of dozens of other proteins, including HSP90, to any leukemia.

"Our study shows how the NOTCH1 pathway hijacks the heat shock transcription factor 1 pathway to promote tumor growth," says study senior investigator Iannis Aifantis, PhD, professor and chair of the Department of Pathology at NYU Langone Health and its Perlmutter Cancer Center. "The cancer cells are sending into overdrive a system that helps healthy cells respond to stress."

A drug blocking HSP90 is already in early clinical trials elsewhere, led by study co-investigator Gabriela Chiosis, PhD, as a treatment for breast cancer. Aifantis says if further testing proves successful, the experimental drug, labeled PU-H71, could be quickly adapted for trials in T-ALL patients.

And because early experiments with the drug in animals and human cells show that blocking HSP90 kills only cancer cells, Aifantis says its use is likely to have fewer side effects than current T-ALL treatments, such as chemotherapy, which kills both normal and cancer cells.

"Having a targeted therapy that kills only cancer cells could really boost our efforts to treat T cell acute lymphoblastic leukemia, which affects mostly children," says study first author Nikos Kourtis, PhD, a postdoctoral fellow at NYU Langone. Kourtis says currently one in five children treated for the disease relapses within a decade. Attempts at blocking NOTCH1 directly have failed, he notes, because of adverse effects on healthy cells connected to the pathway.

As part of the study, researchers genetically blocked HSF1 in mice induced (through increased NOTCH1 activity) to develop T-ALL, killing all cancer cells but not the mice. This evidence, researchers say, showed that HSF1 was essential to the survival of T-ALL cancer cells. The study also found that no adverse effects resulted and healthy blood cell production was not interrupted when HSF1 was removed from mouse bone marrow stem cells.

Further laboratory experiments in T-ALL mice and human cells showed that silencing the gene behind production of HSP90 efficiently killed leukemia cells, especially those with the highest NOTCH1 and HSP90 activity.

Aifantis says his team next plans to evaluate the effects of another eight proteins produced by genes active in the HSF1 pathway to see if any show promising anticancer activity in T-ALL. The team also hopes to launch clinical trials using HSP90 inhibitors against T-ALL.
-end-
Funding support for the study was provided by National Cancer Institute grants P30 CA016087, R01 CA133379, R01 CA105129, R01 CA149655, R01 CA173636, and R01 CA194923; American Cancer Society grant RSG-15-189-01; and Leukemia & Lymphoma Society new idea award 8007-17.

Besides Aifantis and Kourtis, other NYU Langone researchers involved in the study were Charalampos Lazaris, PhD; Kathryn Hockemeyer, MD, PhD; Jasper Mullenders, PhD; Yixiao Gong; Thomas Trimarchi, PhD; Kamala Bhatt; Hai Hu; and Aristotelis Tsirigos, PhD.

Additional research support was provided by Juan Carlos Balandran, Alejandra Jimenez, and Monica Guzman at Weill Cornell Medical College; Liza Shrestha and Chiosis at Memorial Sloan Kettering Cancer Center; Alberto Ambesi-Impiombato and Adolfo Ferrando, at Columbia University; and Elisabeth Paietta at Montefiore Medical Center -- all in New York. Another study co-investigator is Michelle Kelliher at the University of Massachusetts Medical School in Worcester.

Media Inquiries:

David March
12-404-3528
david.march@nyumc.org

NYU Langone Health / NYU School of Medicine

Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.