Nav: Home

Organic Mega Flow Battery transcends lifetime, voltage thresholds

July 23, 2018

To sustain human civilization in the future, clean energy sources must be harnessed to replace the fossil fuels that are now polluting our atmosphere. Solar and wind energy can supply all the necessary energy. However, storage will be needed when the sun is not shining and the wind is not blowing.

Organic flow batteries are a potentially safer, less expensive alternative to lithium ion batteries and vanadium flow batteries for large-scale renewable energy storage.

Now, Harvard researchers have demonstrated a new organic molecule that outlives and outperforms its predecessors, offering the longest-lasting high-performance organic flow battery to date. Nicknamed the Methuselah quinone -- after the longest-lived Biblical figure -- this molecule could usefully store and release energy many tens of thousands of times over multi-year periods.

The research is published in the journal Joule.

The research was co-led by Roy Gordon, the Thomas Dudley Cabot Professor of Chemistry and Professor of Materials Science, and Michael Aziz, the Gene and Tracy Sykes Professor of Materials and Energy Technologies at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS).

"We designed and built a new organic compound that can store electrical energy and also has a very long life before it decomposes," said Gordon. "We discovered degradation processes of the molecules that we previously used in flow batteries. Then we created new, more stable molecules that avoid these problems."

"In previous work, we had demonstrated a chemistry with a long lifespan but low voltage, which leads to low energy storage per molecule, which leads to high cost for a given amount of energy stored," said Aziz. "Now, we have the first chemistry that has both long-term stability and comes in at more than one volt, which is commonly considered the threshold for commercial deployment. I believe it is the first organic-based flow battery that meets all of the technical criteria for practical implementation."

The new chemistry builds off previous research led by Aziz and Gordon. The Methuselah molecule is a modified quinone, an abundant, naturally occurring molecule integral to biological processes like photosynthesis and cellular respiration. Collaborating with theoretical chemistry Professor Alán Aspuru-Guzik, their research team characterized the degradation process of previous quinone molecules in flow batteries and made modifications to increase the calendar life.

In experiments in their laboratories, the Methuselah molecule had a fade rate of less than 0.01 percent per day and less than 0.001 percent per charge/discharge cycle -- which extrapolates to less than 3 percent degradation over the course of a year -- and useful operation for tens of thousands of cycles.

Methuselah also proved highly soluble, meaning it can store more energy in a smaller space. It operates in a weak alkaline electrolyte, reducing the cost of the battery by allowing the use of inexpensive containment materials and an inexpensive polymer membrane to separate the positive and negative terminals.

All of these advances drive down the cost of storage and may make organic storage chemistries cost-effective for long-duration discharge.

"This research demonstrates the potential of organics," said David Kwabi, a postdoctoral fellow at SEAS and co-first author of the paper. "We show that organic molecules are a viable, long-lasting, cost-effective alternative to expensive vanadium batteries."

The research was supported by the U.S. DOE Office of Electricity energy storage program, by the Advanced Research Projects Agency - Energy, by Innovation Fund Denmark, by the Massachusetts Clean Energy Technology Center, and by the Harvard School of Engineering and Applied Sciences.

"This important work represents a significant advance towards low cost, long duration flow batteries," said Imre Gyuk, Director of DOE's Office of Electricity storage program. "Such devices are needed to allow the electric grid to absorb increasing amounts of green but variable renewable generation."

With assistance from Harvard's Office of Technology Development (OTD), the researchers are seeking commercial partners to scale up the technology for industrial applications. Harvard OTD has filed a portfolio of pending patents on innovations in flow battery technology.

Harvard John A. Paulson School of Engineering and Applied Sciences

Related Chemistry Articles:

The chemistry of olive oil (video)
Whether you have it with bread or use it to cook, olive oil is awesome.
With more light, chemistry speeds up
Light initiates many chemical reactions. Experiments at the Laser Centre of the Institute of Physical Chemistry of the Polish Academy of Sciences and the University of Warsaw's Faculty of Physics have for the first time demonstrated that increasing the intensity of illumination some reactions can be significantly faster.
The chemistry of whiskey (video)
Derby Day means it's time to recognize the chemical process of distillation, which makes bourbon possible.
Restoration based on chemistry
Considered the pinnacle of mediaeval painting, the Ghent Altarpiece was painted around 1432 by Jan van Eyck and probably his brother Hubert.
The chemistry of redheads (video)
The thing that sets redheads apart from the crowd is pigmentation.
Scientists discover helium chemistry
The scientists experimentally confirmed and theoretically explained the stability of Na2He.
What might Trump mean for chemistry? (video)
Donald Trump is now the 45th president of the US.
Chemistry on the edge
Defects and jagged surfaces at the edges of nanosized platinum and gold particles are key hot spots for chemical reactivity, researchers confirmed using a unique infrared probe at Berkeley Lab.
Light powers new chemistry for old enzymes
Princeton researchers have developed a method that irradiates biological enzymes with light to expand their highly efficient and selective capacity for catalysis to new chemistry.
Better chemistry through...chemistry
Award-winning UCSB professor Bruce Lipshutz is out to make organic chemistry better for the planet

Related Chemistry Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".