Nav: Home

Materials scientists of Lomonosov MSU proposed a novel approach for obtaining films for solar cells

July 23, 2018

Materials scientists from Lomonosov Moscow State University explained the laws of dissolution and crystallization of hybrid perovskites and proposed a novel approach for obtaining films for solar cells

Scientists of the Lomonosov Moscow State University, Department Materials Science explained the key mechanisms of interaction of hybrid perovskites with solvents and suggested new approaches to obtain perovskite light-absorbing layers for thin-film solar cells from weakly coordinating aprotic solvents.

The results of the study have been recently published in the high-rating journal Chemistry of Materials.

A team of scientists at the Department of Materials Science and the Department of Chemistry of Lomonosov Moscow State University conducts an intensive work in the field of perovskite photovoltaics, which is now the most rapidly developing area in materials science.

So far, thin-film solar cells based on hybrid perovskites have already reached an efficiency of 23.2%, surpassing traditional solar cells based on silicon. The light-absorbing layer of perovskite in such devices can be obtained by simpler and cheaper solution methods. In a new study, performed in the laboratory of "New Materials for Solar Energetics" under the supervision of the head of the laboratory, Ph.D. Alexey Tarasov, young scientists studied the processes of perovskite crystallization from a solvent with unusual properties - gamma-butyrolactone (GBL).

"In our laboratory we develop new innovative non-solvent methods for obtaining solar cells but also pay great attention to the fundamental aspects of perovskite chemistry. This is a traditional characteristic trait of the materials science school of Lomonosov Moscow State University, which distinguishes us from most of the world's groups", - said Alexey Tarasov.

There are two solvents which are usually used to prepare perovskite thin films from solutions: dimethylsulfoxide and dimethylformamide. However, our earlier work showed that crystallization from these solvents proceeds through formation of intermediate compounds - crystallosolvates, which can impair the morphology and functional properties of the perovskite layer.

As a solvent for perovskite, GBL has been also known. In particular, it exhibits so-called retrograde solubility (solubility of perovskite in it decreases with the increase of temperature). This feature was widely used by researchers to produce single crystals, whereas the attempts to obtain a thin film resulted in the formation of separated individual crystallites on a substrate. For a long time, this unusual behavior of perovskite solutions in GBL has remained obscure. It was believed that the perovskite-GBL interaction is weak enough that it does not even form solvates with it (explain). However, scientists discovered that there are at least three types of perovskite crystals with GBL, and some of them have a unique cluster structure. It became clear that the equilibrium in perovskite solutions in GBL is much more complicated than previously expected.

"We have established that perovskite dissolves at room temperature with the formation of such clusters, and upon heating they decompose to small complexes. This leads to supersaturation and precipitation of perovskite from solution in the form of single crystals. We showed that it was theprecipitation of a cluster adduct instead of perovskite that prevented the formation of thin films from this solvent. Based on the understanding of the processes that occur during the dissolution of perovskite in GBL, we proposed approaches that bypass the formation of clusters and results in perovskite crystallization. Consequently, we obtained high-quality films from GBL for the first time. This is an excellent example of the practical application of fundamental chemical knowledge for the solution of materials science problems - just what is generally called fundamental material science throughout the world", - concluded Alexey Tarasov.
The study was conducted in cooperation with scientists from the Kurchatov Center for Synchrotron Radiation and Nanotechnology (KCSRN).

Lomonosov Moscow State University

Related Chemistry Articles:

Coordination chemistry and Alzheimer's disease
It has become evident recently that the interactions between copper and amyloid-β neurotoxically impact the brain of patients with Alzheimer's disease.
Can ionic liquids transform chemistry?
Table salt is a commonplace ingredient in the kitchen, but a different kind of salt is at the forefront of chemistry innovation.
Principles for a green chemistry future
A team led by researchers from the Yale School of Forestry & Environmental Studies recently authored a paper featured in Science that outlines how green chemistry is essential for a sustainable future.
Sugar changes the chemistry of your brain
The idea of food addiction is a very controversial topic among scientists.
Reflecting on the year in chemistry
A lot can happen in a year, especially when it comes to science.
Better chemistry through tiny antennae
A research team at The University of Tokyo has developed a new method for actively controlling the breaking of chemical bonds by shining infrared lasers on tiny antennae.
Chemistry in motion
For the first time, researchers have managed to view previously inaccessible details of certain chemical processes.
Researchers enrich silver chemistry
Researchers from Russia and Saudi Arabia have proposed an efficient method for obtaining fundamental data necessary for understanding chemical and physical processes involving substances in the gaseous state.
The chemistry behind kibble (video)
Have you ever thought about how strange it is that dogs eat these dry, weird-smelling bits of food for their entire lives and never get sick of them?
Top 10 chemistry start-ups
Starting a new chemistry-based company is one part discovery, one part risk.
More Chemistry News and Chemistry Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at