Nav: Home

Researchers find connection between viruses and inflammatory bowel disease

July 23, 2018

AURORA, Colo. (July 23, 2018) - A study led by a researcher at the University of Colorado Anschutz Medical Campus reveals a key connection between viruses and inflammatory bowel diseases like ulcerative colitis and Crohn's disease.

Breck Duerkop, PhD, assistant professor of immunology and microbiology at the University of Colorado School of Medicine, and a team of scientists focused on viruses inhabiting bacteria in the intestine known as bacteriophages or simply phages.

"Phage numbers are elevated at the intestinal mucosal surface and increase in abundance during inflammatory bowel disease (IBD), suggesting that phages play an unidentified role in IBD," said Duerkop, lead author of the study published Monday in the journal Nature Microbiology.

IBD poses significant health burdens worldwide and has inspired intense investigation into the environmental factors causing persistent inflammation of the intestine. Microbial communities are critical in maintaining intestinal health but changes in the composition of these organisms may cause an inflammatory response by the body.

According to Duerkop, most studies looking at how these microbial communities might spark inflammation have focused chiefly on bacteria rather than the viruses residing inside them.

When inflammation occurs, Duerkop found that phage communities change randomly leading to a genetic signature indicative of the inflammatory environment.

"We hypothesize that inflammation or other host defenses alter phage abundances during colitis," the study said. "Such stresses could produce ecological disturbances in the intestinal environment, driving alterations within the viral community."

Those disturbances could be the result of the viruses killing off beneficial bacteria in the intestine and allowing for `bad actor' bacteria to cause inflammation and bowel disease.

The experiments were done with mice.

"What we see in mice is consistent with what we see in humans with IBD," Duerkop said.

While the mechanics of how these phages operate will require further study, Duerkop said this discovery could lead to new kinds of treatment for these often debilitating diseases.

Clinicians could target certain bacteria with viruses to eliminate bacteria that lead to inflammation. Bacteria could be manipulated to circumvent the development of disease.

"We could promote the growth of good bacteria - a kind of phage therapy," Duerkop said. "We could perhaps use phages as markers to identify someone predisposed to developing these diseases. While there is clearly more research to do, the potential is very exciting."
-end-
The co-authors include Manuel Kleiner, North Carolina State University; David Paez-Espino of the Department of Energy, Joint Genome Institute; Wenhan Zhu, University of Texas Southwestern Medical Center; Brian Bushnell, Department of Energy, Joint Genome Institute; Brian Hassell, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center; Sebastian E. Winter, University of Texas Southwestern Medical Center; Nikos C. Kyrpides, Department of Energy, Joint Genome Institute; Lora V. Hooper, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center.

University of Colorado Anschutz Medical Campus

Related Bacteria Articles:

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.