Nav: Home

Elastic slingshot powers snipefish feeding

July 23, 2018

The snipefish, an ocean-dwelling relative of the seahorse, has a very long, skinny snout ending in a tiny mouth. A recent study by UC Davis graduate student Sarah Longo shows that snipefish feed with an elastic-boosted head flick at almost unprecedented speed.

"At as little as two milliseconds, it's among the fastest feeding events ever recorded for fish," said Longo, now a postdoctoral researcher at Duke University.

Snipefish, seahorses and pipefish all have long, skinny snouts and use "pivot feeding" to capture food, Longo said, meaning that they pivot their head rapidly to bring their mouth up close to the prey and suck it in.

"Not only do they pivot, but they pivot faster than their muscles should allow," she said.

Seahorses and pipefish have recently been shown to get around this problem by storing energy in an elastic recoil mechanism. Longo wanted to know if snipefish were up to the same thing.

She first used high-speed video cameras to record snipefish feeding in the lab. Based on those videos, Longo was able to measure how fast the fish pivoted their heads and estimate the amount of energy involved.

Elastic recoil rapidly releases stored energy

The snipefish feeding strike took from two to 7.5 milliseconds from start to prey capture, with an instantaneous power requirement averaging 2800 Watts per kilogram of body weight. The power estimates ranged as high as 5500 Watts per kilogram.

Longo used micro computed tomography and digital X-ray imaging to examine the bones and tendons inside the snipefish's head. She found that the fish use a latched elastic recoil mechanism - like a slingshot, or a compressed spring - to power their feeding strike.

"This mechanism behaves analogous to a slingshot, but instead of a rubber band, the fish stores energy in tendons," Longo said. The mechanism involves a set of bones in the snipefish head and is latched in place by the specific arrangement of a small pair of hyoid bones located below the eye in the "cheek" region of the fish. With the hyoid latched, muscles behind the head put the tendon under tension. A small movement of the hyoid by a muscle releases the latch and unleashes the stored energy.

The discovery has implications for the evolution of this order of fishes, she said. Elastic recoil mechanisms are now known in three types of fish in two families in this group: Seahorses, pipefish and now snipefish. That means that the mechanism may have evolved either very early in the history of the group, or evolved separately in the snipefish and the more closely related pipefish and seahorses.
-end-
Coauthors on the paper, published July 4 in the Proceedings of the Royal Society B, are Tyler Goodearly and Professor Peter Wainwright, Department of Evolution and Ecology, UC Davis College of Biological Sciences. The work was supported by graduate research fellowships from the National Science Foundation.

University of California - Davis

Related Fish Articles:

Reef fish caring for their young are taken advantage of by other fish
Among birds, the practice of laying eggs in other birds' nests is surprisingly common.
How to keep fish in the sea and on the plate
Temporary bans on fishing can be better than permanent ones as a way of allowing fish stocks in an area to recover, while still providing enough to eat, a research team has found.
Anemones are friends to fish
Any port in a storm, any anemone for a small fish trying to avoid being a predator's dinner.
Fish farmers of the Caribbean
There are only so many fish in the sea. And our appetite for seafood has already stressed many wild fisheries to the breaking point.
When a fish becomes fluid
Zebrafish aren't just surrounded by liquid, but turn liquid -- in part -- during their development.
Swapping bacteria may help 'Nemo' fish cohabitate with fish-killing anemones
The fish killer and the fish live in harmony: But how the clownfish thrive in the poisonous tentacles of the anemone remains a mystery.
Fish can detox too -- but not so well, when it comes to mercury
By examining the tissues at a subcellular level, the researchers discovered yelloweye rockfish were able to immobilize several potentially toxic elements within their liver tissues (cadmium, lead, and arsenic) thus preventing them from interacting with sensitive parts of the cell.
How to make fish shine
Scientists from the University of Bath have helped to figure out why shoals of fish flash silver as they twist through the water by studying how the shiny silver cells are created in zebrafish.
A breakthrough for Australia's fish
A research team from the Threatened Species Recovery Hub has made a breakthrough that could help dwindling numbers of Australian freshwater fish species.
Shrimp heal injured fish
James Cook University scientists in Australia have discovered that shrimp help heal injured fish.
More Fish News and Fish Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.