Nav: Home

Elastic slingshot powers snipefish feeding

July 23, 2018

The snipefish, an ocean-dwelling relative of the seahorse, has a very long, skinny snout ending in a tiny mouth. A recent study by UC Davis graduate student Sarah Longo shows that snipefish feed with an elastic-boosted head flick at almost unprecedented speed.

"At as little as two milliseconds, it's among the fastest feeding events ever recorded for fish," said Longo, now a postdoctoral researcher at Duke University.

Snipefish, seahorses and pipefish all have long, skinny snouts and use "pivot feeding" to capture food, Longo said, meaning that they pivot their head rapidly to bring their mouth up close to the prey and suck it in.

"Not only do they pivot, but they pivot faster than their muscles should allow," she said.

Seahorses and pipefish have recently been shown to get around this problem by storing energy in an elastic recoil mechanism. Longo wanted to know if snipefish were up to the same thing.

She first used high-speed video cameras to record snipefish feeding in the lab. Based on those videos, Longo was able to measure how fast the fish pivoted their heads and estimate the amount of energy involved.

Elastic recoil rapidly releases stored energy

The snipefish feeding strike took from two to 7.5 milliseconds from start to prey capture, with an instantaneous power requirement averaging 2800 Watts per kilogram of body weight. The power estimates ranged as high as 5500 Watts per kilogram.

Longo used micro computed tomography and digital X-ray imaging to examine the bones and tendons inside the snipefish's head. She found that the fish use a latched elastic recoil mechanism - like a slingshot, or a compressed spring - to power their feeding strike.

"This mechanism behaves analogous to a slingshot, but instead of a rubber band, the fish stores energy in tendons," Longo said. The mechanism involves a set of bones in the snipefish head and is latched in place by the specific arrangement of a small pair of hyoid bones located below the eye in the "cheek" region of the fish. With the hyoid latched, muscles behind the head put the tendon under tension. A small movement of the hyoid by a muscle releases the latch and unleashes the stored energy.

The discovery has implications for the evolution of this order of fishes, she said. Elastic recoil mechanisms are now known in three types of fish in two families in this group: Seahorses, pipefish and now snipefish. That means that the mechanism may have evolved either very early in the history of the group, or evolved separately in the snipefish and the more closely related pipefish and seahorses.
-end-
Coauthors on the paper, published July 4 in the Proceedings of the Royal Society B, are Tyler Goodearly and Professor Peter Wainwright, Department of Evolution and Ecology, UC Davis College of Biological Sciences. The work was supported by graduate research fellowships from the National Science Foundation.

University of California - Davis

Related Fish Articles:

Ten million tonnes of fish wasted every year despite declining fish stocks
Industrial fishing fleets dump nearly 10 million tonnes of good fish back into the ocean every year, according to Sea Around Us research.
Distant fish relatives share looks
James Cook University scientists have found evidence that even distantly related Australian fish species have evolved to look and act like each other, which confirms a central tenet of evolutionary theory.
A fish of all flavors
Japanese researchers achieve atomic resolution images of taste receptors in fish.
Fish step up to lead when predators are near
Researchers from the University of Bristol have discovered that some fish within a shoal take on the responsibilities of leader when they are under threat from predators.
Fish evolve by playing it safe
New research supports the creation of more marine reserves in the world's oceans because, the authors say, fish can evolve to be more cautious and stay away from fishing nets.
Ancient southern China fish may have evolved prior to the 'Age of Fish'
An ancient fish species with unusual scales and teeth from the Kuanti Formation in southern China may have evolved prior to the 'Age of Fish', according to a study published March 8, 2017 in the open-access journal PLOS ONE by Brian Choo from Flinders University, Australia, and colleagues at the Institute of Vertebrate Paleontology and Paleoanthropology, China.
90 percent of fish used for fishmeal are prime fish
A new study emerging from the Sea Around Us project at the University of British Columbia's Institute for the Oceans and Fisheries reveals that from 1950 to 2010, 27 percent of commercial marine landings were diverted to uses other than direct human consumption.
The firefly among fish
The flashlight fish Anomalops katoptron, which inhabits the coral reefs of the Pacific, uses flashing signals to forage for food at night.
A social network for fish
Researchers have won a major new grant award for a study that will help to improve the welfare of live fish used in scientific tests.
Clever fish keep cool
Ocean warming is occurring at such a rapid rate that fish are searching for cooler waters to call home.

Related Fish Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...