Elastic slingshot powers snipefish feeding

July 23, 2018

The snipefish, an ocean-dwelling relative of the seahorse, has a very long, skinny snout ending in a tiny mouth. A recent study by UC Davis graduate student Sarah Longo shows that snipefish feed with an elastic-boosted head flick at almost unprecedented speed.

"At as little as two milliseconds, it's among the fastest feeding events ever recorded for fish," said Longo, now a postdoctoral researcher at Duke University.

Snipefish, seahorses and pipefish all have long, skinny snouts and use "pivot feeding" to capture food, Longo said, meaning that they pivot their head rapidly to bring their mouth up close to the prey and suck it in.

"Not only do they pivot, but they pivot faster than their muscles should allow," she said.

Seahorses and pipefish have recently been shown to get around this problem by storing energy in an elastic recoil mechanism. Longo wanted to know if snipefish were up to the same thing.

She first used high-speed video cameras to record snipefish feeding in the lab. Based on those videos, Longo was able to measure how fast the fish pivoted their heads and estimate the amount of energy involved.

Elastic recoil rapidly releases stored energy

The snipefish feeding strike took from two to 7.5 milliseconds from start to prey capture, with an instantaneous power requirement averaging 2800 Watts per kilogram of body weight. The power estimates ranged as high as 5500 Watts per kilogram.

Longo used micro computed tomography and digital X-ray imaging to examine the bones and tendons inside the snipefish's head. She found that the fish use a latched elastic recoil mechanism - like a slingshot, or a compressed spring - to power their feeding strike.

"This mechanism behaves analogous to a slingshot, but instead of a rubber band, the fish stores energy in tendons," Longo said. The mechanism involves a set of bones in the snipefish head and is latched in place by the specific arrangement of a small pair of hyoid bones located below the eye in the "cheek" region of the fish. With the hyoid latched, muscles behind the head put the tendon under tension. A small movement of the hyoid by a muscle releases the latch and unleashes the stored energy.

The discovery has implications for the evolution of this order of fishes, she said. Elastic recoil mechanisms are now known in three types of fish in two families in this group: Seahorses, pipefish and now snipefish. That means that the mechanism may have evolved either very early in the history of the group, or evolved separately in the snipefish and the more closely related pipefish and seahorses.
-end-
Coauthors on the paper, published July 4 in the Proceedings of the Royal Society B, are Tyler Goodearly and Professor Peter Wainwright, Department of Evolution and Ecology, UC Davis College of Biological Sciences. The work was supported by graduate research fellowships from the National Science Foundation.

University of California - Davis

Related Fish Articles from Brightsurf:

Fish banks
Society will require more food in the coming years to feed a growing population, and seafood will likely make up a significant portion of it.

More than 'just a fish' story
For recreational fishing enthusiasts, the thrill of snagging their next catch comes with discovering what's hooked on the end of the line.

Fish evolution in action: Land fish forced to adapt after leap out of water
Many blennies - a remarkable family of fishes - evolved from an aquatic 'jack of all trades' to a 'master of one' upon the invasion of land, a new study led by UNSW scientists has shown.

How fish got onto land, and stayed there
Research on blennies, a family of fish that have repeatedly left the sea for land, suggests that being a 'jack of all trades' allows species to make the dramatic transition onto land but adapting into a 'master of one' allows them to stay there.

Fish feed foresight
As the world increasingly turns to aqua farming to feed its growing population, there's no better time than now to design an aquaculture system that is sustainable and efficient.

Robo-turtles in fish farms reduce fish stress
Robotic turtles used for salmon farm surveillance could help prevent fish escapes.

Heatwaves risky for fish
A world-first study using sophisticated genetic analysis techniques have found that some fish are better than others at coping with heatwaves.

A new use for museum fish specimens
This paper suggests using museum specimens to estimate the length-weight relationships of fish that are hard to find alive in their natural environment.

Reef fish caring for their young are taken advantage of by other fish
Among birds, the practice of laying eggs in other birds' nests is surprisingly common.

Anemones are friends to fish
Any port in a storm, any anemone for a small fish trying to avoid being a predator's dinner.

Read More: Fish News and Fish Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.