Nav: Home

How experience changes basics of memory formation

July 23, 2018

We know instinctively that our experiences shape the way we learn. If we are highly familiar with a particular task, like cooking for example, learning a new recipe is much easier than it was when we were a novice. New research from the University of California, Davis, shows that experience also changes the way our neurons become plastic and form new memories.

The work is published online in the journal Neuropsychopharmacology.

"Our main question was, how does experience modify the way that the brain learns?" said Brian Wiltgen, associate professor at the UC Davis Department of Psychology and Center for Neuroscience. "If you zoom all the way down to the level of a neuron, does experience alter the way that it becomes plastic?"

Wiltgen's laboratory uses laboratory mice to understand the cellular and molecular mechanisms underlying learning and memory in a brain structure called the hippocampus. Unlike their wild cousins, lab mice are safe from predators, warm, well-fed and well-cared for, but they don't have the same variety of life experience as a wild mouse.

Decades of research with laboratory rodents has shown that a protein called the NMDA receptor, found at the connection between nerve cells, is essential for forming new memories. If you train mice on a simple task, you can prevent them from learning by giving them a drug that blocks the NMDA receptor.

Graduate students Ana Crestani and Jamie Krueger in Wiltgen's group used a simple but robust training procedure called "contextual fear conditioning." Mice were placed in a novel environment (where they had never been before) and after a few minutes received a mild foot shock through electrified grids on the floor. The sensation is about the same as placing your tongue on a battery. The shock startled the mice and, as a result, they learned to be scared of the new context. Consistent with other work done in laboratory mice, they found that if NMDA receptors were blocked, animals showed no memory for the experience the following day.

To see if experienced animals learned the same way, the researchers trained mice who had previously undergone fear conditioning but in a different environment. When these animals were trained in a new context they could develop a response even when NMDA receptors were blocked.

"This suggests that experienced animals form memories using different plasticity mechanisms than naive subjects even if they are learning about the exact same thing," Wiltgen said. In other words, the way our neurons form new connections depends on their prior history, a phenomenon called metaplasticity.

Reactivating networks

Animals form memories by creating and strengthening connections between networks of neurons. Wiltgen's hypothesis was that if an existing network was reactivated, it might form connections in new ways.

"In our experiments, we found that previously activated neurons were more excitable than their neighbors. That is, they fired many more action potentials when stimulated," Wiltgen said.

They hypothesized that the excitable state of these neurons could make them capable of different kinds of plasticity -- as if the network were amped up and ready to learn new information.

To demonstrate this, they worked with mice in which previously activated neurons glow with green fluorescent protein, or GFP. Co-author John Gray, assistant professor in the Department of Neurology and Center for Neuroscience, and his graduate student, Eden Barragan, measured the excitability of these cells, finding that the GFP cells in previously activated networks were indeed more excitable than other neurons.

Importantly, when they trained experienced mice on the contextual fear conditioning task, they found that GFP cells were preferentially activated, suggesting that they formed the new memory. Interestingly, the way they did so was unique. Instead of using NMDA receptors, these neurons appeared to use a different molecule, the metabotropic glutamate receptor.

"When animals learn something completely new, it activates NMDA receptors, which strengthen synapses and forms a new memory network. In addition, the activated cells become more excitable, which allows them to encode additional information using a different receptor," Wiltgen said.

These findings provide insight into the way new experiences are integrated with established memories -- something that animals, including humans, do every day. Yet as Wiltgen admits, his laboratory animals are still very naive compared to their wild relatives.

"A wild rodent would learn about hundreds of environments and whether they were safe or dangerous. Our animals only learned about two. Nonetheless, our work moves us closer to understanding how experienced animals learn about the world, which may be quite different than we previously thought," he said.
-end-
Additional authors on the study are Yuki Nakazawa and Sonya Nemes, both at UC Davis when the experiments were conducted, and Jorge Quillfeldt at the Federal University of Rio Grande do Sul, Porto Alegre, Brazil. Ana Crestani was a visiting graduate student in the Neuroscience Graduate Program at UC Davis when the research was conducted. The work was funded by the Whitehall Foundation and the Brazilian National Council for Scientific and Technological Development.

University of California - Davis

Related Neurons Articles:

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.