Nav: Home

Scientists uncover new connection between smell and memory

July 23, 2018

TORONTO, ON (Canada) - Neurobiologists at the University of Toronto have identified a mechanism that allows the brain to recreate vivid sensory experiences from memory, shedding light on how sensory-rich memories are created and stored in our brains.

Using smell as a model, the findings offer a novel perspective on how the senses are represented in memory, and could explain why the loss of the ability to smell has become recognized as an early symptom of Alzheimer's disease.

"Our findings demonstrate for the first time how smells we've encountered in our lives are recreated in memory," said Afif Aqrabawi, a PhD candidate in the Department of Cell & Systems Biology in the Faculty of Arts & Science at U of T, and lead author of a study published this month in Nature Communications.

"In other words, we've discovered how you are able to remember the smell of your grandma's apple pie when walking into her kitchen."

There is a strong connection between memory and olfaction - the process of smelling and recognizing odours - owing to their common evolutionary history. Examining this connection in mice, Aqrabawi and graduate supervisor Professor Junchul Kim in the Department of Psychology at U of T found that information about space and time integrate within a region of the brain important for the sense of smell - yet poorly understood - known as the anterior olfactory nucleus (AON).

"When these elements combine, a what-when-where memory is formed," said Aqrabawi. This is why, for example, you might have the ability to remember the smell of a lover's perfume (the what) when you reminisce about your first kiss (the when and where).

Curious about the function of the anterior olfactory nucleus, Aqrabawi and Kim designed a series of tests to exploit the preference of mice to sniff new odors.

"They prefer to spend more time smelling a new odour than one that's familiar to them," said Aqrabawi. "When they lose this preference, it's implied they no longer remember the smell even though they have sniffed it before, so they continue to smell something as if for the first time."

In the course of examining the structure and function of the AON, the researchers uncovered a previously unknown neural pathway between it and the hippocampus - a structure critical for memory and contextual representation, and highly implicated in Alzheimer's disease. They found they could mimic the odour memory problems seen in Alzheimer's patients by disconnecting communication between the hippocampus and the AON.

Whereas the mice whose hippocampus-AON connection was left intact refrained from returning to familiar locations to sniff odors that were no longer novel, those with a disconnected pathway returned to sniff previously smelled odors for longer periods of time. Replicating early degeneration of the AON demonstrated the inability of the when-where context to complete the function and provide the what of the odor memory.

"It demonstrates that we now understand which circuits in the brain govern the episodic memory for smell. The circuit can now be used as a model to study fundamental aspects of human episodic memory and the odour memory deficits seen in neurodegenerative conditions," said Aqrabawi.

There is a vast body of work that reports olfactory dysfunction - particularly olfactory memory loss - as symptoms of the onset of Alzheimer's disease. Such deficits in the ability to recognize odours precede the cognitive decline and are correlated with the degree of illness.

The AON has a well-documented involvement in Alzheimer's disease but not much else is known about its function. It has consistently been reported to be among the earliest sites of neurodegeneration including the formation of neurofibrillary tangles, which are abnormal proteins found in Alzheimer's patients.

Because of this, smell tests are now used in the hopes of detecting the early onset of Alzheimer's, yet they are imperfectly designed since the underlying cause of the olfactory problems remain unknown.

"Given the early degeneration of the AON in Alzheimer's disease, our study suggests that the odor deficits experienced by patients involve difficulties remembering the 'when' and 'where' odours were encountered," said Kim.

The researchers say that with a better understanding of the neural circuits underlying odour memory, tests that directly and effectively examine the proper functioning of these circuits can be developed.

"Such tests might be more sensitive to detecting problems than if patients were prompted to remember an odour itself," added Kim. "The motivation to develop them is high due to their quick, cheap, and easy administration."
-end-
The findings are described in the study "Hippocampal projections to the anterior olfactory nucleus differentially convey spatiotemporal information during episodic odour memory", published this month in Nature Communications. Support for the research was provided by the Canadian Institutes for Health Research and the Natural Sciences and Engineering Research Council of Canada.

Note to editors:

1) Download the full research paper at https://www.nature.com/articles/s41467-018-05131-6.

MEDIA CONTACTS:

Afif Aqrabawi, PhD Candidate
Department of Cell & Systems Biology
University of Toronto
+1 647 389 0484
afif.aqrabawi@mail.utoronto.ca

Sean Bettam
Communications, Faculty of Arts & Science
University of Toronto, Canada
+1 416 946 7950
s.bettam@utoronto.ca

University of Toronto

Related Memory Articles:

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.
VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.
The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.
How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.
A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.
Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.
Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.
An immunological memory in the brain
Inflammatory reactions can change the brain's immune cells in the long term -- meaning that these cells have an 'immunological memory.' This memory may influence the progression of neurological disorders that occur later in life, and is therefore a previously unknown factor that could influence the severity of these diseases.
Anxiety can help your memory
Anxiety can help people to remember things, a study from the University of Waterloo has found.
Pores with a memory
Whether for separation processes, photovoltaics, catalysis, or electronics, porous polymer membranes are needed in many fields.
More Memory News and Memory Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.