Nav: Home

Abnormal gene copying seen in tauopathy fruit fly models

July 23, 2018

SAN ANTONIO, Texas -- It sounds like science fiction: Nefarious genes clone themselves and settle their rogue copies in distant outposts of the galaxy (namely, our DNA), causing disease.

But it's a real phenomenon, and in research published July 23, scientists at UT Health San Antonio revealed that this genetic copy-and-paste activity is significantly increased in fruit fly models of tauopathies--neurodegenerative disorders that include Alzheimer's disease.

The researchers also discovered that lamivudine, an anti-retroviral drug approved for HIV and hepatitis B, decreased the copy-making and reduced the death of neuron cells in the brains of the fruit flies.

This research, published in Nature Neuroscience, suggests a potential novel avenue to treat the memory-robbing disease, which impacts 5.7 million Americans who have an Alzheimer's diagnosis and the millions more who provide care for them.

The researchers are from the Sam & Ann Barshop Institute for Longevity & Aging Studies, the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, and the Department of Cell Systems & Anatomy at UT Health San Antonio.

The team identified "transposable element" activation as a key factor in neuron death in tauopathies. These disorders are marked by deposits of tau protein in the brain. There are more than 20 tauopathies, including Alzheimer's.

Lamivudine limited expression of genes that make DNA retrotransposons, which are the gene elements that clone themselves and insert the copies into a new spot, said Bess Frost, Ph.D., assistant professor of cell systems & anatomy and member of the Barshop and Biggs institutes at UT Health San Antonio.

"We know that these genes are copying themselves at higher levels in the tauopathy fly model," Dr. Frost said. "And we know we can stop that from happening by giving them this drug."

It's thought that the copy-and-paste activity is an effect that follows tau deposit accumulation. Ultimately in the disease course, neurons die.

"The toxic tau can be present, but if we give this drug and it blocks the transposable element activity, it's enough to decrease the amount of brain cells that are dying in the fly model," Dr. Frost said.

The researchers will study whether the drug could have the same effect in a human tauopathy. So far they have clues.

"We wanted to know if the transposable element activity was relevant to a human tauopathy, so we analyzed data obtained from a public-private program called the Accelerating Medicines Partnership," Dr. Frost said.

Transposable elements were found to be expressed at higher levels in the data drawn from human samples of Alzheimer's disease and another tauopathy, progressive supranuclear palsy. This gene expression is the first step before the copying activity can occur and will be further studied, Dr. Frost said.

The team believes the fruit fly and human findings are relevant not just to Alzheimer's disease but to all of the less common tauopathies, as well.

Normal fruit flies live about 70 days. The tauopathy model lives about 30 to 40 days, and researchers observe brain cell death at about 10 days, Dr. Frost said.
-end-
Acknowledgments

Dr. Frost is supported by a grant from the National Institute of Neurological Disorders and Stroke (NINDS) of the National Institutes of Health (NIH), and by funding from the William & Ella Owens Medical Research Foundation of San Antonio.

The University of Texas Health Science Center at San Antonio, now called UT Health San Antonio®, is one of the country's leading health sciences universities. With missions of teaching, research, healing and community engagement, its schools of medicine, nursing, dentistry, health professions and graduate biomedical sciences have produced 35,850 alumni who are leading change, advancing their fields and renewing hope for patients and their families throughout South Texas and the world. To learn about the many ways "We make lives better® ," visit http://www.uthscsa.edu.

University of Texas Health Science Center at San Antonio

Related Brain Articles:

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.