The first mouse model of human pancreas cancer subtypes

July 23, 2020

Scientists at Cold Spring Harbor Laboratory (CSHL) have created the first mouse model of pancreatic cancer that recreates two subtypes of the human disease. The model, published July 23, 2020 in Cancer Discovery, will help researchers investigate why some pancreatic cancers are more aggressive than others and what causes them to progress, paving the way to targeted therapies.

Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, has a grim prognosis. Recently, molecular analyses of patient tumors have identified two subtypes of the disease that behave very differently. The first, known as classical PDAC, is slow to progress and can be responsive to chemotherapy. The second, known as basal PDAC, spreads quickly and usually does not respond to chemotherapy.

CSHL researchers have been studying both subtypes using three-dimensional cultures of human cancer cells called organoids, a system developed in CSHL Cancer Center Director David Tuveson's lab. But the researchers in this lab, which is dedicated by the Lustgarten Foundation, also want to understand how cancer cells behave inside the pancreas, where surrounding tissues influence a tumor's growth and progression.

To make such studies possible, postdoctoral researcher Koji Miyabayashi injected patient-derived PDAC organoids into mice, delivering them directly to the pancreatic duct, where this type of tumor originates.

Like patient cancers, the transplanted tumors fell into two distinct subtypes: one remaining inside the pancreatic duct and slow to progress, the other much more invasive and deadly. Molecular analyses revealed that the two groups of tumors shared defining features of classical and basal PDAC.

"We can now study these two subtypes of tumors within the same microenvironment where they develop in patients," Tuveson says. "This model is now our racehorse in pancreatic cancer research, allowing us to understand what drives these cancers and investigate therapeutic strategies that target each subtype's particular vulnerabilities."

Already, the team has discovered that PDAC subtype is not a fixed identity. Some of the classical tumors in the mice progressed, acquiring the invasive nature as well as the molecular features of the basal subtype. The researchers found that activity of the K-Ras gene, a notorious driver of many cancers, was key to determining each tumor's nature. They also identified 13 other genes whose activity surged as the classical subtype tumors became invasive. Reining in those genes might be a way to keep the more aggressive PDAC subtype in check, they say.

"A patient with classical subtype has a good prognosis. Maybe if we can induce classical subtype from basal subtype, the patient will have a better chance of survival," Miyabayashi explains.
-end-


Cold Spring Harbor Laboratory

Related Pancreatic Cancer Articles from Brightsurf:

Precision chemo-immunotherapy for pancreatic cancer?
Pancreatic cancer is highly lethal: according to the National Cancer Institute, only about 10 percent of patients remain alive five years after diagnosis.

Nerves keep pancreatic cancer cells from starving
Pancreatic cancer cells avert starvation by signaling to nerves, which grow into dense tumors and secrete nutrients.

Pancreatic cancer: Subtypes with different aggressiveness discovered
To date, no targeted personalized therapies for pancreatic cancer exist.

Bringing the 'sticky' back to pancreatic cancer
A multidisciplinary team of researchers at Japan's Tohoku University has found that a gene regulator, called BACH1, facilitates the spread of pancreatic cancer to other parts of the body.

Does lung damage speed pancreatic cancer?
High levels of CO2 in the body, due to chronic respiratory disorders, may exacerbate pancreatic cancer, making it more aggressive and resistant to therapy.

Scientists have identified the presence of cancer-suppressing cells in pancreatic cancer
Researchers have identified cells containing a protein called Meflin that has a role in restraining the progression of pancreatic cancer.

Pancreatic cancer discovery reveals how the aggressive cancer fuels its growth
A new discovery about pancreatic cancer sheds light on how the cancer fuels its growth and may help explain how promising cancer drugs work -- and for whom they will fail.

Overcoming resistance in pancreatic cancer
In pancreatic cancer cells' struggle to survive, the cells choose alternative routes when their main pathways are blocked by drugs.

Exposing how pancreatic cancer does its dirty work
Pancreatic cancer is a puzzle -- tumors slough off cells into the bloodstream early in the disease, but the tumors themselves have almost no blood vessels in them.

Targeting cell division in pancreatic cancer
Study provides new evidence of synergistic effects of drugs that inhibit cell division and support for further clinical trials.

Read More: Pancreatic Cancer News and Pancreatic Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.