Nav: Home

2 immunotherapies merged into single, more effective treatment

July 23, 2020

Some of the most promising advances in cancer treatment have centered on immunotherapies that rev up a patient's immune system to attack cancer. But immunotherapies don't work in all patients, and researchers have been searching for ways to increase their effectiveness.

Now, researchers at Washington University School of Medicine in St. Louis have combined two immunotherapy strategies into a single therapy and found, in studies in human cells and in mice, that the two together are more effective than either alone in treating certain blood cancers, such as leukemia. Evidence also suggests that the new approach could be safer than one of the most recent cellular immunotherapies to be approved by the FDA, called CAR-T cell therapy, in which the immune system's T cells are engineered to target tumor cells. Cell-based immunotherapies are most commonly used against blood cancers but can be harnessed against some solid tumors as well, such as prostate and lung tumors and melanoma.

The study appears online in the journal Blood.

In the new research, the scientists have harnessed the technology used to engineer CAR-T cells and, instead of modifying specialized immune cells called T cells, they have used similar technology to alter different immune cells called natural killer (NK) cells. The resulting immunotherapy combines the benefits of both strategies and may reduce the side effects that are sometimes seen in CAR-T cell therapy. In some patients, for example, CAR-T cell therapy causes a cytokine storm, a life-threatening overreaction of the immune system.

"Immunotherapies show great promise for cancer therapy, but we need to make them more effective and more safe for more patients," said co-senior author Todd A. Fehniger, MD, PhD, a professor of medicine. "This combined approach builds on the treatment strategy that we developed for leukemia patients using natural killer cells. We can supercharge natural killer cells to enhance their ability to attack cancer cells. And at the same time, we can use the genetic engineering approaches of CAR cell therapy to direct the natural killer cells to a tumor target that would normally be overlooked by NK cells. It fundamentally changes the types of cancer that NK cells could be used to treat, both additional blood cancers and potentially solid tumors as well."

In past work, Fehniger and his colleagues showed that they could collect a patient's own NK cells, expose the cells to a specific recipe of chemical signals that prime the cells to attack tumors, and then return the primed cells to patients for therapy. This chemical exposure is a sort of basic training for the cells, according to the investigators, preparing the NK cells to fight the cancer. When the cells are then returned to the body, they remember their training, so to speak, and are more effective at targeting the tumor cells. Because their training has given the NK cells a memory of what to do when they encounter tumor cells, the researchers dubbed them memory-like NK cells.

In small clinical trials conducted at Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, such cells were effective in putting some patients with leukemia into a lasting remission, but they didn't work for everyone. Some tumor cells still evaded the memory-like NK cells, despite the cells' basic training. To help the cells find the tumor cells, so their basic training can kick in and kill the correct target, the researchers modified the memory-like NK cells with the same CAR (chimeric antigen receptor) molecule that is typically used to target T cells to tumor cells. The CAR molecule is flexible and can be modified to direct the cells to different tumor types, depending on the proteins on the surfaces of the cancer cells.

The resulting hybrid cells were more effective in treating mice with leukemia than memory-like NK cells alone, leading to longer survival for mice treated with CAR memory-like NK cells. The researchers also found the therapy to be effective despite the fact that the mice were given relatively low doses of the cells.

"One aspect of this study I find most exciting is how nicely these hybrid NK cells expand in the mice to respond to their tumors," said co-senior author Melissa Berrien-Elliott, PhD, an instructor in medicine. "We can provide a tiny dose and see an incredible amount of tumor control. To me, this highlights the potency of these cells, as well as their potential to expand once in the body, which is critical for translating these findings to the clinic."

Fehniger also pointed out that an advantage of NK cells in general -- and for biological reasons that the scientists are still working to understand -- NK cells don't trigger a dangerous immune response or the long-term side effects that T-cell therapy can cause in attacking the patient's healthy tissues, a condition called graft-versus-host disease.

"In all of the clinical trials exploring any type of NK cells, we don't see the troublesome side effects of cytokine release syndrome or neurotoxicity that we see with CAR-T cells that can profoundly affect patients," Fehniger said. "These side effects can be life-threatening and require intensive care. We're still working to understand how NK cells are different. But if you can get the benefits of CAR-T cells with few if any of the side effects, that's a reasonable line of research to pursue. Another benefit of this safer therapy is the potential to give these cells to patients at an earlier stage in their disease, rather than using them as a last resort."

Other groups have developed CAR-NK cells, but a major difference is that other groups' NK cells came from donated cord blood or induced stem cells, rather than adult donors or the patients themselves.

"The other groups have artificially differentiated stem cells into something that resembles an NK cell," Fehniger said. "With that strategy, there's no guarantee that those cells will have all the properties of typical mature NK cells. In contrast, we're starting with adult NK cells, so we're more confident that they will have all the inherent properties and behavior of adult NK cells, which we have already shown to be effective in certain types of cancer patients, especially those with leukemia. Inducing memory properties adds to their persistence and effectiveness against many cancer types."

"Over the next several years, we would like to be able to scale up this process to produce enough cells for a first-in-human clinical trial, and investigate their effectiveness in different types of human blood cancers," he said.
-end-
This work was supported by the Howard Hughes Medical Institute; the National Institutes of Health (NIH), grant numbers F32CA200253, T32HL00708843, K12CA167540 and R01CA205239; and a NIH SPORE in Leukemia, grant number P50CA171063. Additional funding was provided by the Siteman Cancer Center through NIH grant number P30CA091842; the Leukemia and Lymphoma Society; the V Foundation for Cancer Research; the Children's Discovery Institute at Washington University School of Medicine; the Jamie Erin Follicular Lymphoma Research Fund; and the Steinback Fund.

Berrien-Elliott and Fehniger are inventors on patents related to this study that have been filed by Washington University. Fehniger has received research support from ImmunityBio, Compass Therapeutics, and HCW Biologics, and advises Kiadis, Nkarta, Indapta, and Orca Biosystems. Other authors report serving as a consultant for Kiowa Hakka Kirin and C4 Therapeutics; receiving research funding from Bristol Myers-Squibb, Verastem Pharmaceuticals, Innate Pharmaceuticals, Genentech/Roche, Celgene, and Corvus Pharmaceuticals; having direct ownership of equity in and a consultancy with Wugen; serving on the consulting/advisory committee for Rivervest, Bioline, Amphivena and Bluebird, Celegene, Incyte, NeoImuneTech, and Macrogenics and ownership investment in Magenta and WUGEN.

Gang M, Marin ND, Wong P, Neal CC, Marsala L, Foster M, Schappe T, Meng W, Tran J, Schaettler M, Davila M, Gao F, Cashen AF, Bartlett NL, Mehta-Shah N, Kahl BS, Kim MY, Cooper ML, DiPersio JF, Berrien-Elliott MM, Fehniger TA. CAR-modified memory-like NK cells exhibit potent responses to NK-resistant lymphomas. Blood. July 2, 2020.

Washington University School of Medicine's 1,500 faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is a leader in medical research, teaching and patient care, ranking among the top 10 medical schools in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Washington University School of Medicine

Related Cancer Articles:

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.
Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.
Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.