Nav: Home

FSU biologists shed light on how cells move resources

July 23, 2020

Florida State University researchers have new insight into the tiny packages that cells use to move molecules, a structure that is key to cellular metabolism, drug delivery and more.

Their research uncovered more about the proteins that form the outer structure of those cellular packages. The work was published in the journal Science Advances.

"Just like human mail carriers have to transport packages of different shapes and sizes, cells also have to transport a variety of materials to the right compartments within them," said Scott Stagg, associate professor of chemistry and biochemistry and a study co-author. "They need to bring in molecules from outside the cell and transport them between the different cellular compartments, and they have little molecular machines called vesicles that function like postal carriers moving microscopic packages from one compartment to another."

Scientists have previously observed cells create vesicles -- fluid-filled sacks that move materials within a cell or from one cell to another. They have also observed a protein called clathrin form a cage-like arrangement that made up the outside structure of vesicles.

But there were still questions about how exactly clathrin forms those structures and what determines the shapes it can take.

Using high-powered microscopes, the FSU researchers discovered that another protein, known as an adaptor protein, ties multiple clathrin molecules together in a way that allows those structures to take on different sizes.

They also showed that the clathrin coat could make a so-called "basket" shape, and one that scientists had thought the protein could not form, showing that clathrin assembly is more complicated than previously thought.

"We learned a lot about clathrin-coated vesicles by looking at the ones that were made by cells themselves," said Mohammadreza Paraan, a researcher at FSU's Institute of Molecular Biophysics and the study's lead author. "We found new structures and patterns that really surprised us."

The researchers found that the clathrin structures that other researchers formed in a test tube were different from the ones they saw from cells.

"This shows that there are things we don't understand about how clathrin coat assembly is regulated and progresses in cells," Stagg said. "Our hypothesis is that the cargo that vesicles carry has a role in dictating how the coats are made and that explains why we see different structures."

The ability for cells to form vesicles is essential. It is the main route by which molecules like hormones, proteins and viruses enter cells and move within them. If it stops working, cells can die, or disease can take hold in an organism.

Understanding cellular transport is also important because the process is often hijacked by viruses like influenza or the virus that causes COVID-19 to gain entry to the cell.

"Understanding the molecular mechanisms of clathrin-based transport is important because it is such a fundamental process," Stagg said. "It touches on so many cellular processes. The better we understand it, the more likely it is that we can manipulate it to do things like stop virus entry, enhance drug delivery inside cells or modulate neurotransmitter levels in the brain, just to mention a few. It's a really exciting time for clathrin research."
This work was supported by the National Institutes of Health.

Florida State University

Related Protein Articles:

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.
Diets high in protein, particularly plant protein, linked to lower risk of death
Diets high in protein, particularly plant protein, are associated with a lower risk of death from any cause, finds an analysis of the latest evidence published by The BMJ today.
A new understanding of protein movement
A team of UD engineers has uncovered the role of surface diffusion in protein transport, which could aid biopharmaceutical processing.
A new biotinylation enzyme for analyzing protein-protein interactions
Proteins play roles by interacting with various other proteins. Therefore, interaction analysis is an indispensable technique for studying the function of proteins.
Substituting the next-best protein
Children born with Duchenne muscular dystrophy have a mutation in the X-chromosome gene that would normally code for dystrophin, a protein that provides structural integrity to skeletal muscles.
A direct protein-to-protein binding couples cell survival to cell proliferation
The regulators of apoptosis watch over cell replication and the decision to enter the cell cycle.
A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.
Resurrecting ancient protein partners reveals origin of protein regulation
After reconstructing the ancient forms of two cellular proteins, scientists discovered the earliest known instance of a complex form of protein regulation.
Sensing protein wellbeing
The folding state of the proteins in live cells often reflect the cell's general health.
Protein injections in medicine
One day, medical compounds could be introduced into cells with the help of bacterial toxins.
More Protein News and Protein Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.