Neuronal survival and axonal regrowth obtained in vitro

July 24, 2009

While repair of the central nervous system has long been considered impossible, French researchers from Inserm, the CNRS and the UPMC have just developed a strategy that could promote neuronal regeneration after injury. The in vitro studies have just been published in the journal PLoS ONE.

Repair of the central nervous system and restoration of voluntary motor activity through axonal re-growth has long been considered impossible in mammals. Over the last decade, numerous attempts proved disappointing overall. The Inserm team led by Alain Privat has recently shown that an essential component interfering with regeneration was due to the activity of astrocytes, feeder cells that surround neurons.

Normally, the primary role of astrocytes is to supply the nutrients necessary for neuronal function. In the event of spinal injury or lesion, astrocytes synthesize two particular proteins (glial fibrillary acidic protein (GFAP) and vimentin), which isolate the damaged neuron to prevent interference with the operation of the central nervous system.

While the protection is initially useful, in the long run it induces formation of impermeable cicatricial tissue around the neuron, thus constituting impenetrable scarring hostile to axonal regeneration and hence to propagation of nervous impulses. In the event of severe injury, the scarring engenders motor paralysis.

On the basis of the initial findings, the researchers pursued a strategy aimed at developing a therapeutic instrument to block formation of cicatricial tissue. In order to do so, they used gene therapy based on use of interfering RNA. The short RNA sequences, which were made to measure, were inserted into the cytoplasm of cultured astrocytes using a viral therapeutic vector. Once in the cell, the RNA activates mechanisms which block the synthesis of the two proteins secreted by astrocytes and responsible for cicatrix formation. Using that technique, the researchers succeeded in controlling the reaction of astrocytes and when the latter were cultured with neurons, they promoted neuronal survival and triggered axonal growth.

The promising results are now to be validated by in vivo studies. The next stage of the work, currently ongoing, applies the same method to the mouse. The approach may be used in the future in patients having undergone spinal injury.
-end-
Find out more:

Source

A novel and efficient gene transfer strategy reduces glial scarring and improves neuronal survival and axonal growth in vitro
Desclaux Mathieu1, Teigell Marisa 2, Amar Lahouari1, Vogel Roland1, Gimenez y Ribotta Minerva3, Privat Alain4 and Mallet Jacques1

1 : Biotechnology and Biotherapy Group, Centre de Recherche de l'Institut du Cerveau et de la Moelle Epiniere, Centre National de la Recherche Scientifique (CNRS) UMR 7225, Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 975, Université Pierre et Marie Curie (UPMC) - Hôpital de la Pitié Salpêtrière, Paris F-75013, France.

2 : NEUREVA-inc., Montpellier F-34091 cedex 5, France.

3 : Consejo Superior de Investigationes Cientifícas (CSIC), Universidad Miguel Hernández (UMH), Instituto de Neurociencias de Alicante, Campus de San Juan., Sant Joan D'Alacant Nacional 332, E-03550, España

4 : Institut National de la Santé et de la Recherche Médicale (INSERM) U583, Physiopathologie et Thérapie des Déficits Sensoriels et Moteurs, Institut des Neurosciences de Montpellier (INM), Université Montpellier 2, Montpellier F-34091 cedex 5, France.

Researcher contacts
Alain Privat
Directeur de recherche Inserm
Unité 583 « physiopathologie et thérapie des déficits sensoriels et moteurs »
Email : privat@univ-montp2.fr
Tel : 04 99 63 60 06

Jacques Mallet
Directeur de recherche CNRS
Centre de recherche de l'institut du cerveau et de la moelle épinière
Email : jacques.mallet@upmc.fr
Tel : 01 42 17 75 30

Press contact
Inserm - Priscille Rivière
Email : presse@inserm.fr
Tel : 01 44 23 60 97

INSERM (Institut national de la santé et de la recherche médicale)

Related Astrocytes Articles from Brightsurf:

Astrocytes identified as master 'conductors' of the brain
A team of Duke scientists has found that glial astrocytes are involved in regulating inhibitory synapses by binding to neurons through an adhesion molecule called NrCAM.

Brain metastases cause severe brain damage that can be inhibited by treatment
By using a specific treatment to override this activation, the researchers were able to return cerebrovascular flow to healthy levels.

Astrocytes build synapses after cocaine use in mice
Drugs of abuse, like cocaine, are so addictive due in part to their cellular interaction, creating strong cellular memories in the brain that promote compulsive behaviors.

Twinkling, star-shaped brain cells may hold the key to why, how we sleep
A new study published today in the journal Current Biology suggests that star-shaped brain cells known as astrocytes could be as important to the regulation of sleep as neurons.

OHSU discovers cell in zebrafish critical to brain assembly, function
New research from Oregon Health & Science University for the first time documents the presence of astrocytes in zebrafish, a milestone that will open new avenues of research into a star-shaped type of glial cell in the brain that is critical for nearly every aspect of brain assembly and function.

Brain astrocytes show metabolic alterations in Parkinson's disease
A new study using induced pluripotent stem cell (iPSC) technology links astrocyte dysfunction to Parkinson's disease (PD) pathology.

Star-shaped brain cells shed light on the link between cannabis use and sociability
Cannabis use can lead to behavioral changes, including reduced social interactions in some individuals.

Genetic malfunction of brain astrocytes triggers migraine
Neuroscientists of the University of Zurich shed a new light on the mechanisms responsible for familial migraine: They show that a genetic dysfunction in specific brain cells of the cingulate cortex area strongly influences head pain occurrence.

Star-shaped brain cells may play a critical role in glaucoma
After a brain injury, cells that normally nourish nerves may actually kill them instead, a new study in rodents finds.

When astrocytes attack: Stem cell model shows possible mechanism behind neurodegeneration
A new study published today in Neuron led by The New York Stem Cell Foundation (NYSCF) Research Institute's Valentina Fossati, Ph.D., creates astrocytes - an integral support cell in the brain -- from stem cells and shows that in disease-like environments, these normally helpful cells can turn into neuron-killers.

Read More: Astrocytes News and Astrocytes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.