Airway cells use 'tasting' mechanism to detect and clear harmful substances

July 24, 2009

The same mechanism that helps you detect bad-tasting and potentially poisonous foods may also play a role in protecting your airway from harmful substances, according to a study by scientists at the University of Iowa Roy J. and Lucille A. Carver College of Medicine. The findings could help explain why injured lungs are susceptible to further damage.

The study, published online July 23 in Science Express, shows that receptors for bitter compounds that are found in taste buds on the tongue also are found in hair-like protrusions on airway cells. In addition, the scientists showed that, unlike taste cells on the tongue, these airway cells do not need help from the nervous system to translate detection of bitter taste into an action that expels the harmful substance.

The hair-like protrusions, called motile cilia, were already known to beat in a wave-like motion to sweep away mucus, bacteria and other foreign particles from the lungs.

The study is the first to show that motile cilia on airway cells not only have this "clearing" function, but also use the receptors to play a sensory role. The researchers also found that when the receptors detect bitter compounds, the cilia beat faster, suggesting that the sensing and the motion capabilities of these cellular structures are linked.

"On the tongue, bitter substances trigger taste cells to stimulate neurons, which then evoke a response -- the perception of a bitter taste. In contrast, the airway cells appear to use a different mechanism that does not require nerves," said Alok Shah, a UI graduate student and co-first author of the study. "In the airways, bitter substances both activate the receptors and elicit a response -- the increased beating of the cilia -- designed to eliminate the offending material."

Shah and co-first author Yehuda Ben-Shahar, Ph.D., an assistant professor of biology at Washington University who was a postdoctoral fellow at the UI when the study was conducted, worked in the lab of senior study author Michael Welsh, M.D., UI professor of internal medicine and molecular physiology and biophysics, who holds the Roy J. Carver Chair of Internal Medicine and Physiology and Biophysics. Welsh also is a Howard Hughes Medical Institute investigator.

"These findings suggest that we have evolved sophisticated mechanisms to guard ourselves from harmful environmental stimuli," Ben-Shahar said. "Our work also suggests that losing cilia in the lungs, due to smoking or disease, would result in a reduced general ability to detect harmful inhaled chemicals, increasing the likelihood of further damaging an injured lung."
-end-
In addition to Ben-Shahar, Shah and Welsh, the UI team included Thomas Moninger, assistant director of the UI Central Microscopy Research Facility, and Joel Kline, M.D., UI professor of internal medicine.

The study was funded by grants from the National Institutes of Health.

ARTICLE ABSTRACT:http://www.sciencemag.org/cgi/content/abstract/1173869

STORY SOURCE: University of Iowa Health Care Media Relations, 200 Hawkins Drive, Room E110 GH, Iowa City, Iowa 52242-1009

MEDIA CONTACT: Jennifer Brown, 319-356-7124, jennifer-l-brown@uiowa.edu

University of Iowa

Related Cilia Articles from Brightsurf:

Are the movements of tiny hairlike structures a key to our health?
New research from USC scholars identifies the mechanisms in play for cilia to work effectively and productively to push particles and fluid along, which is especially important given their critical role in health and in even ensuring reproduction.

Research reveals cilia's role in cardiovascular functions and genetic diseases
Research from Chapman University discover ciliary extracellular-like vesicles (cELVs). Released by fluid-shear, cELVs act as nano-compartments within a cilium.

Controlling artificial cilia with magnetic fields and light
Researchers have made artificial cilia, or hair-like structures, that can bend into new shapes in response to a magnetic field, then return to their original shape when exposed to the proper light source.

Unraveling mechanisms of ventricular enlargement linked to schizophrenia
Scientists at St. Jude Children's Research Hospital have implicated two microRNAs in the biological processes that underlie the ventricle enlargement observed in models of schizophrenia.

Scientists show how tiny, mutated neuron antennae impair brain connectivity
Axons are the long thread-like extensions of neurons that send electrical signals to other brain cells.

Downstream signaling: Cilia release ectosomes to deliver important messages in the kidney
Primary cilia are found on nearly all cell types and serve an important role in sensing external mechanical and chemical signals, likely through extracellular vesicles (EV) called ectosomes.

Zooming into cilia sheds light into blinding diseases
A new study reveals an unprecedented close-up view of cilia linked to blindness.

Structural protein essential for ciliary harmony in comb jellies
Researchers from the University of Tsukuba and the Japanese National Institute for Basic Biology identified a structural protein that is essential for the coordinated beating of millions of tiny cilia on the surface of comb jellies.

Defective cilia linked to heart valve birth defects
Bicuspid aortic valve (BAV), the most common heart valve birth defect, is associated with genetic variation in human primary cilia during heart valve development, report Medical University of South Carolina researchers in Circulation.

Defects in heart valve cilia during fetal development cause mitral valve prolapse
Genetic mutations in heart valve cells of the developing fetus lead to mitral valve prolapse, report a global collaborative of researchers, including Medical University of South Carolina investigators, in today's Science Translational Medicine.

Read More: Cilia News and Cilia Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.