New research determines how a single brain trauma may lead to Alzheimer's disease

July 24, 2012

BOSTON (July 24, 2012, 5:00PM EST)--A study, performed in mice and utilizing post-mortem samples of brains from patients with Alzheimer's disease, found that a single event of a moderate-to-severe traumatic brain injury (TBI) can disrupt proteins that regulate an enzyme associated with Alzheimer's. The paper, published in The Journal of Neuroscience, identifies the complex mechanisms that result in a rapid and robust post-injury elevation of the enzyme, BACE1, in the brain. These results may lead to the development of a drug treatment that targets this mechanism to slow the progression of Alzheimer's disease.

"A moderate-to-severe TBI, or head trauma, is one of the strongest environmental risk factors for Alzheimer's disease. A serious TBI can lead to a dysfunction in the regulation of the enzyme BACE1. Elevations of this enzyme cause elevated levels of amyloid-beta, the key component of brain plaques associated with senility and Alzheimer's disease," said first author Kendall Walker, PhD, postdoctoral associate in the department of neuroscience at Tufts University School of Medicine (TUSM).

Building on her previous work, neuroscientist Giuseppina Tesco, MD, PhD, of Tufts University School of Medicine (TUSM), led a research team that first used an in vivo model to determine how a single episode of TBI could alter the brain. In the acute phase (first two days) following injury, levels of two intracellular trafficking proteins (GGA1 and GGA3) were reduced, and an elevation of BACE1 enzyme level was observed.

Next, in an analysis of post-mortem brain samples from patients with Alzheimer's disease, the researchers found that GGA1 and GGA3 levels were reduced while BACE1 levels were elevated in the brains of Alzheimer's disease patients compared to the brains of people without Alzheimer's disease, suggesting a possible inverse association.

In an additional experiment using a mouse strain genetically modified to express the reduced level of GGA3 that was observed in the brains of Alzheimer's disease patients, the team found that one week following traumatic brain injury, BACE1 and amyloid-beta levels remained elevated even when GGA1 levels had returned to normal. The research suggests that reduced levels of GGA3 were solely responsible for the increase in BACE 1 levels and therefore the sustained amyloid-beta production observed in the sub-acute phase, or seven days, after injury.

"When the proteins are at normal levels, they work as a clean-up crew for the brain by regulating the removal of BACE1 enzymes and facilitating their transport to lysosomes within brain cells, an area of the cell that breaks down and removes excess cellular material. BACE1 enzyme levels may be stabilized when levels of the two proteins are low, likely caused by an interruption in the natural disposal process of the enzyme," said Tesco, assistant professor of neuroscience at Tufts School of Medicine and member of the neuroscience program faculty at the Sackler School of Graduate Biomedical Sciences at Tufts.

"We found that GGA1 and GGA3 act synergistically to regulate BACE1 post-injury. The identification of this interaction may provide a drug target to therapeutically regulate the BACE1 enzyme and reduce the deposition of amyloid-beta in Alzheimer's patients," she continued. "Our next steps are to confirm these findings in post-mortem brain samples from patients with moderate-to-severe traumatic brain injuries."

Moderate-to-severe TBIs are caused most often by traumas, such as severe falls or motor vehicle accidents, that result in a loss of consciousness. Not all traumas to the head result in a TBI. According to the Centers for Disease Control and Prevention, each year 1.7 million people sustain a TBI. Concussions, the mildest form of a TBI, account for about 75% of all TBIs. Studies have linked repeated head trauma to brain disease and some previous studies have linked single events of brain trauma to brain disease, such as Alzheimer's. Alzheimer's disease currently affects as many as 5.1 million Americans and is the most common cause of dementia in adults age 65 and over.
-end-
Additional authors on the study are Eugene Kang, MPH, research assistant in the department of neuroscience at TUSM; Michael Whalen, MD, PhD, Neuroscience Center and department of pediatrics at Massachusetts General Hospital and associate professor at Harvard Medical School; and Yong Shen, MD, PhD, of the Center for Advanced Therapeutic Strategies for Brain Disorders at Roskamp Institute.

This study was supported by grants from the National Institute on Aging (#AG033016 and #AG025952), part of the National Institutes of Health; and a grant from the Cure Alzheimer's Fund.

Walker KR, Kang EL, Whalen MJ, Shen Y, Tesco G. The Journal of Neuroscience. "Depletion of GGA1 and GGA3 mediates post-injury elevation of BACE1." Published online July 25, 2012, DOI: 0.1523/JNEUROSCI.5491-11.2012

About Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences

Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts University are international leaders in innovative medical education and advanced research. The School of Medicine and the Sackler School are renowned for excellence in education in general medicine, biomedical sciences, special combined degree programs in business, health management, public health, bioengineering and international relations, as well as basic and clinical research at the cellular and molecular level. Ranked among the top in the nation, the School of Medicine is affiliated with six major teaching hospitals and more than 30 health care facilities. Tufts University School of Medicine and the Sackler School undertake research that is consistently rated among the highest in the nation for its effect on the advancement of medical science.

Tufts University, Health Sciences Campus

Related Traumatic Brain Injury Articles from Brightsurf:

Point-of-care biomarker assay for traumatic brain injury
Intracranial abnormalities on CT scan in patients with traumatic brain injury (TBI) can be predicted by glial fibrillary acidic protein (GFAP) levels in the blood.

Long-studied protein could be a measure of traumatic brain injury
WRAIR scientists have recently demonstrated that cathepsin B, a well-studied protein important to brain development and function, can be used as biomarker, or indicator of severity, for TBI.

Reducing dangerous swelling in traumatic brain injury
After a traumatic brain injury (TBI), the most harmful damage is caused by secondary swelling of the brain compressed inside the skull.

Blue light can help heal mild traumatic brain injury
Daily exposure to blue wavelength light each morning helps to re-entrain the circadian rhythm so that people get better, more regular sleep which was translated into improvements in cognitive function, reduced daytime sleepiness and actual brain repair.

Dealing a therapeutic counterblow to traumatic brain injury
A team of NJIT biomedical engineers are developing a therapy which shows early indications it can protect neurons and stimulate the regrowth of blood vessels in damaged tissue.

Predictors of cognitive recovery following mild to severe traumatic brain injury
Researchers have shown that higher intelligence and younger age are predictors of greater cognitive recovery 2-5 years post-mild to severe traumatic brain injury (TBI).

Which car crashes cause traumatic brain injury?
Motor vehicle crashes are one of the most common causes of TBI-related emergency room visits, hospitalizations and deaths.

Traumatic brain injury and kids: New treatment guidelines issued
To help promote the highest standards of care, and improve the overall rates of survival and recovery following TBI, a panel of pediatric critical care, neurosurgery and other pediatric experts today issued the third edition of the Brain Trauma Foundation Guidelines for the Management of Pediatric Severe TBI.

Addressing sleep disorders after traumatic brain injury
Amsterdam, NL, December 10, 2018 - Disorders of sleep are some of the most common problems experienced by patients after traumatic brain injury (TBI).

Rutgers researchers discover possible cause for Alzheimer's and traumatic brain injury
Rutgers researchers discover a possible cause for Alzheimer's and traumatic brain injury, and the new mechanism may have also led to the discovery of an effective treatment.

Read More: Traumatic Brain Injury News and Traumatic Brain Injury Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.