Brain structure reveals ability to regulate emotions

July 24, 2015

We all vary in how often we become happy, sad or angry, and also in how strongly these emotions are expressed. This variability is a part of our personality and can be seen as a positive aspect that increases diversity in society. However, there are people that find it so difficult to regulate their emotions that it has a serious impact on their work, family and social life. These individuals may be given an emotional instability diagnosis such as borderline personality disorder or antisocial personality disorder.

Previous studies have shown that people diagnosed with emotional instability disorders exhibit a decrease in the volume of certain brain areas. The scientists wanted to know if these areas are also associated with the variability in the ability to regulate emotions that can be seen in healthy individuals. In the current study, 87 healthy subjects were given a clinical questionnaire and asked to rate to what degree they have problems with regulating emotions in their everyday lives. The brains of the subjects were then scanned with MRI. The scientists found that an area in the lower frontal lobe, the so-called orbitofrontal cortex, exhibited smaller volumes in the healthy individuals that reported that they have problems with regulating emotions. The greater the problems, the smaller the volume detected. The same area is known to have a smaller volume in patients with borderline personality disorder and antisocial personality disorder. Similar findings were also seen in other areas of the brain that are known for being important in emotional regulation.

"The results support the idea that there is a continuum in our ability to regulate emotions, and if you are at the extreme end of the spectrum, you are likely to have problems with functioning in society and this leads to a psychiatric diagnosis", says Associate Professor Predrag Petrovic, first author of the study and researcher at the Department of Clinical Neuroscience, Karolinska Institutet. "According to this idea, such disorders should not be seen as categorical, that you either have the condition or not. It should rather be seen as an extreme variant in the normal variability of the population".
-end-
Publication: "Significant grey matter changes in a region of the orbitofrontal cortex in healthy participants predicts emotional dysregulation", Predrag Petrovic, Carl Johan Ekman, Johanna Klahr, Lars Tigerström, Göran Rydén, Anette G. M. Johansson, Carl Sellgren, Armita Golkar, Andreas Olsson, Arne Öhman, Martin Ingvar and Mikael Landén, Social Cognitive and Affective Neuroscience, online: 15 juni 2015, doi: 10.1093/scan/nsv072.

For more information, please contact:

Predrag Petrovic, Associate Professor
Department of Clinical Neuroscience
Phone: +46 8 52483261
Mobile: +46 73 5101211
E-mail: predrag.petrovic@ki.se

Karolinska Institutet

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.