Parasitic flatworms flout global biodiversity patterns

July 24, 2015

The odds of being attacked and castrated by a variety of parasitic flatworms increases for marine horn snails the farther they are found from the tropics. A Smithsonian-led research team discovered this exception to an otherwise globally observed pattern--usually biodiversity is greatest in the tropics and decreases toward the poles. The study, published in Ecology, makes a case for using host-parasite relationships as a tool to understand why there are typically more species--and more interactions between species--in the tropics than anywhere else in the world.

"Unlike free-living species, parasites must use hosts as their habitats," said co-author Osamu Miura, former postdoc at the Smithsonian Tropical Research Institute in Panama and associate professor at Kochi University in Japan. "Wide-ranging hosts provide a nearly constant habitat for the parasites, regardless of latitude."

Such host-parasite systems are thus particularly useful for testing hypotheses about global biodiversity trends. Generations of scientists have tried to explain why biodiversity decreases from the tropics to the poles--a pattern known as the latitudinal diversity gradient. Suggested hypotheses include greater seasonal stability, more complex food webs, faster speciation rates and lower extinction rates in the tropics relative to higher latitudes. Because many of these variables influence each other, it is hard to test the effects of one factor independent of the rest.

"The cool thing about horn snails and their parasites is that we can actually test hypotheses about biodiversity," said lead researcher Mark Torchin, a staff scientist at the Smithsonian Tropical Research Institute. He explains that even across a widely variable geographic range--along the Pacific and Atlantic coasts from Central America to the subtropical United States--the horn snails serve as natural, standardized habitats for measuring parasite diversity. "It lets us do a real, apples-to-apples comparison when the habitat--the snails--is the same across this broad geographic region."

The Pacific horn snail (Cerithideopsis californica) and Atlantic horn snail (C. pliculosa) are two closely related species widespread in estuaries along the coasts from the tropics to the temperate zone. At least 20 species of trematode--a kind of flatworm--compete to parasitize and castrate the snails. The trematodes produce offspring that leave the snails and eventually infect migratory sea birds. So although the snails are restricted to their local habitat, the trematodes themselves are spread across vast distances by the birds.

Co-author Ryan Hechinger, professor at the University of California, San Diego's Scripps Institution of Oceanography, explains that the parasites' unusual life history allows the research team to simplify the question of how the latitudinal diversity gradient arose. Because the trematodes spread so quickly up and down the coast, they could rule out speciation rates as a factor affecting their pattern of distribution.

"So, if greater speciation rates cause the normal diversity gradient--decreasing from the temperate zone to the tropics--and if we preclude that from being a factor, we shouldn't see the usual pattern for these trematodes," Hechinger said. "That's exactly what we see in our study, suggesting that speciation does play a role in creating the normal latitudinal diversity gradient."

The research team collected snails and parasites from 43 field sites spread across five countries and 27 degrees of latitude in the Pacific and Atlantic Ocean, and found that parasite prevalence, diversity and competition rates all increased with higher latitude in a reversed diversity gradient. The reversed pattern suggests that local ecological factors also have a part to play in shaping biodiversity. In the tropics, environmental instability--such as from hurricanes or storm runoff--and greater snail death rates might decrease the available pool of snails for trematodes to parasitize. Conversely, greater stability and larger snail populations in the temperate zone sustain higher trematode species diversity over time.

The co-authors note that there are advantages to paying attention to parasites, which are generally overlooked despite being found everywhere. Apart from some research on humans, for example, there are few comprehensive studies looking at how parasite diversity changes in a single, wide-ranging species across latitude. Since the latitudinal diversity gradient generally holds true across the world, it remains important to understand how and why this pattern exists. "We now have a plan to conduct similar research in Asia to test the robustness of our findings on the other side of the world," said Miura.
-end-
The Smithsonian Tropical Research Institute, headquartered in Panama City, Panama, is a unit of the Smithsonian Institution. The Institute furthers the understanding of tropical nature and its importance to human welfare, trains students to conduct research in the tropics and promotes conservation by increasing public awareness of the beauty and importance of tropical ecosystems. Website: http://www.stri.si.edu.

Reference: Torchin, M.E., Miura O., and Hechinger, R.F. Parasite species richness and intensity of interspecific interactions increase with latitude in two wide-ranging hosts. Ecology. DOI:10.1890/15-0518.1

Smithsonian Tropical Research Institute

Related Biodiversity Articles from Brightsurf:

Biodiversity hypothesis called into question
How can we explain the fact that no single species predominates?

Using the past to maintain future biodiversity
New research shows that safeguarding species and ecosystems and the benefits they provide for society against future climatic change requires effective solutions which can only be formulated from reliable forecasts.

Changes in farming urgent to rescue biodiversity
Humans depend on farming for their survival but this activity takes up more than one-third of the world's landmass and endangers 62% of all threatened species.

Predicting the biodiversity of rivers
Biodiversity and thus the state of river ecosystems can now be predicted by combining environmental DNA with hydrological methods, researchers from the University of Zurich and Eawag have found.

About the distribution of biodiversity on our planet
Large open-water fish predators such as tunas or sharks hunt for prey more intensively in the temperate zone than near the equator.

Bargain-hunting for biodiversity
The best bargains for conserving some of the world's most vulnerable salamanders and other vertebrate species can be found in Central Texas and the Appalachians, according to new conservation tools developed at the National Institute for Mathematical and Biological Synthesis (NIMBioS) at the University of Tennessee, Knoxville.

Researchers solve old biodiversity mystery
The underlying cause for why some regions are home to an extremely large number of animal species may be found in the evolutionary adaptations of species, and how they limit their dispersion to specific natural habitats.

Biodiversity offsetting is contentious -- here's an alternative
A new approach to compensate for the impact of development may be an effective alternative to biodiversity offsetting -- and help nations achieve international biodiversity targets.

Biodiversity yields financial returns
Farmers could increase their revenues by increasing biodiversity on their land.

Biodiversity and wind energy
The location and operation of wind energy plants are often in direct conflict with the legal protection of endangered species.

Read More: Biodiversity News and Biodiversity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.