Nav: Home

Made-to-measure silicon building blocks

July 24, 2018

The broad spectrum of applications for silicones ranges from medical implants and cosmetics to hydraulic oils and sealants to corrosion protection - an important topic in view of global corrosion damage to the tune of about US$ 3.3 trillion per year. To optimize silicon-based synthetic materials for specific applications, made-to-measure chlorosilane building blocks are required in order to produce and crosslink the long-chain polymers. This influences, for example, the material's viscosity and flow properties. Completely new challenges are emerging in the area of 3D printing, with the aid of which products such as individualized running shoes can be manufactured.

Since 1940, the Müller-Rochow Direct Process has formed the backbone of the silicone industry. In this process, elementary silicon is converted with methyl chloride into methylchlorosilanes at high temperatures and pressures in the presence of a copper catalyst. The working group led by Professor Matthias Wagner at the Institute of Inorganic and Analytical Chemistry of Goethe University Frankfurt has now developed a complementary process that has several advantages over the Direct Process: It uses hexachlorodisilane and chlorinated hydrocarbons as starting materials. "Hexachlorodisilane is already mass-produced for the semiconductor industry and the perchlorethylene (PER) we use particularly frequently is a non-flammable liquid which is so inexpensive that it's used worldwide as a solvent for dry cleaning," says Matthias Wagner. In addition, the process runs at room temperature and under normal pressure. To activate it, just a small concentration of chloride ions is needed in place of a catalyst.

"Our process produces highly functionalized organochlorosilanes that are ideal crosslinkers. In addition, their special structure offers excellent possibilities to adjust the mechanical flexibility of the silicon chains as desired," explains co-inventor Isabelle Georg, whose doctoral dissertation is being sponsored by the Evonik Foundation. Julian Teichmann was also involved in the project. He confirms that above all the close collaboration between Goethe University and Evonik had a tremendous influence on his training: "Regular discussion of our results with Evonik's industrial chemists opened my eyes from the beginning to economic constraints and ecological requirements. It was fascinating to follow the path from our discoveries in the lab via the patenting procedures to realization on a technical scale in practice."

The chemists in Frankfurt believe that their monomers' special potential lies in the fact that they contain not only silicon-chlorine bonds but also carbon-carbon multiple bonds. The purpose of the former is to construct the inorganic silicon-oxygen chains; the latter can be linked to form organic polymers. This unique combination permits new routes to inorganic-organic hybrid materials.
-end-
Publication: I. Georg et al: Exhaustively Trichlorosilylated C1 and C2 Building Blocks: Beyond the Müller-Rochow Direct Process, in: J. Am. Chem. Soc. 2018, DOI: 10.1021/jacs.8b05950

Further information: Professor Matthias Wagner, Institute of Inorganic and Analytical Chemistry, Riedberg Campus, Tel.: ++49(0)69-798-29156, Matthias.Wagner@chemie.uni-frankfurt.de

Goethe University Frankfurt

Related Silicon Articles:

2D antimony holds promise for post-silicon electronics
Researchers in the Cockrell School of Engineering are searching for alternative materials to silicon with semiconducting properties that could form the basis for an alternative chip.
Silicon technology boost with graphene and 2D materials
In a review published in Nature, ICFO researchers and collaborators report on the current state, challenges, opportunities of graphene and 2D material integration in Silicon technology.
Light and sound in silicon chips: The slower the better
Acoustics is a missing dimension in silicon chips because acoustics can complete specific tasks that are difficult to do with electronics and optics alone.
Silicon as a semiconductor: Silicon carbide would be much more efficient
In power electronics, semiconductors are based on the element silicon -- but the energy efficiency of silicon carbide would be much higher.
New insight into glaciers regulating global silicon cycling
A new review of silicon cycling in glacial environments, led by scientists from the University of Bristol, highlights the potential importance of glaciers in exporting silicon to downstream ecosystems.
Understanding the (ultra-small) structure of silicon nanocrystals
New research provides insight into the structure of silicon nanocrystals, a substance that promises to provide efficient lithium ion batteries that power your phone to medical imaging on the nanoscale.
Remaining switched on to silicon-based electronics
It has been assumed that we are approaching the performance limits of silicon-based power electronics.
Move over, silicon switches: There's a new way to compute
Researchers have introduced a voltage-controlled topological spin switch for logic and memory devices, such as computer hard drives, that now use nanomagnetic mechanisms to store and manipulate information.
Hippos, the animal silicon pumps
The excrements of hippos play an important role in the ecosystem of African lakes and rivers.
Made-to-measure silicon building blocks
Silicones are synthetic materials used in a broad range of applications.
More Silicon News and Silicon Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.