Nav: Home

Monarch butterflies rely on temperature-sensitive internal timer while overwintering

July 24, 2019

ANN ARBOR--The fact that millions of North American monarch butterflies fly thousands of miles each fall and somehow manage to find the same overwintering sites in central Mexican forests and along the California coast, year after year, is pretty mind-blowing.

Once they get there, monarchs spend several months in diapause, a hormonally controlled state of dormancy that aids winter survival. Though diapause is not as obviously impressive as the celebrated annual migrations, it holds mysteries that have perplexed scientists who study biological timing.

Weeks before warming temperatures and longer days signal to the monarchs that it's time to mate and begin spring's northward migration, an internal timer goes off like an alarm clock to rouse the insects, telling them it's time to end diapause and prepare for the critical upcoming events.

Studies in other organisms have shown that cold temperatures can influence the diapause-termination timer, and University of Michigan biologist D. André Green suspected the same is true for monarchs. His study at monarch overwintering sites in central California confirmed it, and his gene expression analyses help explain how cold temperature speeds up that internal timer.

"These results are particularly interesting because they address a counterintuitive result: How does cold temperature, which normally slows down an organism's metabolism and development, speed up diapause? This work is one of the first to provide insights into this question," said Green, a President's Postdoctoral Fellow in the U-M Department of Ecology and Evolutionary Biology who began the work while at the University of Chicago.

The findings have important implications for North America's monarchs--whose populations have declined steadily for decades at the overwintering sites--as the climate changes, Green and co-author Marcus Kronforst of the University of Chicago wrote in a Molecular Ecology study scheduled for publication July 24.

"Understanding how diapause dynamics are affected by environmental and anthropogenic factors at their overwintering sites may be critical for understanding North American monarch population decline and guiding future conservation efforts, a point highlighted by the record low number of monarchs recorded in the western North American monarch population in 2018," Green and Kronforst wrote.

The findings also suggest that monarchs will act as an important sentinel species for monitoring environmental change and disturbance at overwintering sites. If diapause ends too early, monarchs may lose some of the protective time the dormancy period provides.

Green's study involved capturing female monarch butterflies at overwintering sites in central California in November 2015, after they entered diapause. The live insects were brought back to the Chicago lab.

In an environmental chamber there, the butterflies were exposed to temperatures and day lengths approximating November in central California: 10 hours of light at 63 degrees Fahrenheit, followed by 14 hours of darkness at 50 degrees.

In December and again in January, Green's team returned to the same overwintering sites, live-captured additional female monarchs and shipped them to the lab. In the wild, those winter-caught butterflies also experienced short days, along with nighttime temperatures that dipped below 50 degrees.

Green then compared the reproductive maturity of the different groups by counting the number of eggs in each female. An abundance of mature eggs is an indication that the female has terminated diapause, while a paucity of mature eggs indicates that she is still in diapause.

"The monarchs collected from the wild in December showed increased reproductive development compared to the monarchs that had been in the laboratory since November," Green said. "This indicated that an environmental condition in the wild--cold temperature--sped up the timer."

As part of the same study, Green also analyzed gene expression in the different groups of monarchs to understand how the internal timer works. Results suggest that transient markings on histones--proteins around which DNA winds and that control gene expression--may act as a timing mechanism.

The results also show that calcium signaling in the butterfly's head is key, potentially linking the accumulation of cryoprotectants during cold weather to the internal timer.

The research was supported by the National Science Foundation, U.S. Fish and Wildlife Service, and National Institutes of Health. Wild monarchs were collected on private property near Pismo Beach, California, with permission of the landowners.

Green is currently working on a separate study of monarch migration at a study site in U-M's Matthaei Botanical Gardens.
-end-
D. André Green

University of Michigan

Related Butterflies Articles:

Scientists identify British butterflies most threatened by climate change
Many British butterflies and moths have been responding to warmer temperatures by emerging earlier in the year and for the first time scientists have identified why this is creating winners and losers among species.
Cities are key to saving monarch butterflies
Monarch butterflies are at risk of disappearing from most of the US, and to save them, we need to plant milkweed for them to lay their eggs on.
Butterflies are genetically wired to choose a mate that looks just like them
Male butterflies have genes which give them a sexual preference for a partner with a similar appearance to themselves, according to new research.
Butterflies thrive in grasslands surrounded by forest
For pollinating butterflies, it is more important to be close to forests than to agricultural fields, according to a study of 32,000 butterflies by researchers at Linköping University and the Swedish University of Agricultural Sciences in Uppsala.
Fewer monarch butterflies are reaching their overwintering destination
The monarch butterfly is currently experiencing dire problems with its migration in eastern North America.
Butterflies of the soul
A new study reveals how interneurons, dubbed 'the butterflies of the soul,' emerge and diversify in the brain.
At last, butterflies get a bigger, better evolutionary tree
Butterflies offer key insights into community ecology, how species originate and evolve, climate change and interactions between plants and insects.
Earliest fossil evidence of butterflies and moths
Researchers working in Germany have unearthed the earliest known fossil evidence of insects from the order Lepidoptera, which includes butterflies and moths.
How a 'flipped' gene helped butterflies evolve mimicry
Scientists from the University of Chicago analyzed genetic data from a group of swallowtail species to find out when and how mimicry first evolved, and what has been driving those changes since then.
Convergent evolution of mimetic butterflies confounds classification
David Lohman, associate professor of biology at The City College of New York's Division of Science, is co-author of a landmark paper on butterflies 'An illustrated checklist of the genus Elymnias Hübner, 1818 (Nymphalidae, Satyrinae).' Lohman and his colleagues from Taiwan and Indonesia revise the taxonomy of Asian palmflies in the genus Elymnias in light of a forthcoming study on the butterflies' evolutionary history.
More Butterflies News and Butterflies Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab