Nav: Home

Monarch butterflies rely on temperature-sensitive internal timer while overwintering

July 24, 2019

ANN ARBOR--The fact that millions of North American monarch butterflies fly thousands of miles each fall and somehow manage to find the same overwintering sites in central Mexican forests and along the California coast, year after year, is pretty mind-blowing.

Once they get there, monarchs spend several months in diapause, a hormonally controlled state of dormancy that aids winter survival. Though diapause is not as obviously impressive as the celebrated annual migrations, it holds mysteries that have perplexed scientists who study biological timing.

Weeks before warming temperatures and longer days signal to the monarchs that it's time to mate and begin spring's northward migration, an internal timer goes off like an alarm clock to rouse the insects, telling them it's time to end diapause and prepare for the critical upcoming events.

Studies in other organisms have shown that cold temperatures can influence the diapause-termination timer, and University of Michigan biologist D. André Green suspected the same is true for monarchs. His study at monarch overwintering sites in central California confirmed it, and his gene expression analyses help explain how cold temperature speeds up that internal timer.

"These results are particularly interesting because they address a counterintuitive result: How does cold temperature, which normally slows down an organism's metabolism and development, speed up diapause? This work is one of the first to provide insights into this question," said Green, a President's Postdoctoral Fellow in the U-M Department of Ecology and Evolutionary Biology who began the work while at the University of Chicago.

The findings have important implications for North America's monarchs--whose populations have declined steadily for decades at the overwintering sites--as the climate changes, Green and co-author Marcus Kronforst of the University of Chicago wrote in a Molecular Ecology study scheduled for publication July 24.

"Understanding how diapause dynamics are affected by environmental and anthropogenic factors at their overwintering sites may be critical for understanding North American monarch population decline and guiding future conservation efforts, a point highlighted by the record low number of monarchs recorded in the western North American monarch population in 2018," Green and Kronforst wrote.

The findings also suggest that monarchs will act as an important sentinel species for monitoring environmental change and disturbance at overwintering sites. If diapause ends too early, monarchs may lose some of the protective time the dormancy period provides.

Green's study involved capturing female monarch butterflies at overwintering sites in central California in November 2015, after they entered diapause. The live insects were brought back to the Chicago lab.

In an environmental chamber there, the butterflies were exposed to temperatures and day lengths approximating November in central California: 10 hours of light at 63 degrees Fahrenheit, followed by 14 hours of darkness at 50 degrees.

In December and again in January, Green's team returned to the same overwintering sites, live-captured additional female monarchs and shipped them to the lab. In the wild, those winter-caught butterflies also experienced short days, along with nighttime temperatures that dipped below 50 degrees.

Green then compared the reproductive maturity of the different groups by counting the number of eggs in each female. An abundance of mature eggs is an indication that the female has terminated diapause, while a paucity of mature eggs indicates that she is still in diapause.

"The monarchs collected from the wild in December showed increased reproductive development compared to the monarchs that had been in the laboratory since November," Green said. "This indicated that an environmental condition in the wild--cold temperature--sped up the timer."

As part of the same study, Green also analyzed gene expression in the different groups of monarchs to understand how the internal timer works. Results suggest that transient markings on histones--proteins around which DNA winds and that control gene expression--may act as a timing mechanism.

The results also show that calcium signaling in the butterfly's head is key, potentially linking the accumulation of cryoprotectants during cold weather to the internal timer.

The research was supported by the National Science Foundation, U.S. Fish and Wildlife Service, and National Institutes of Health. Wild monarchs were collected on private property near Pismo Beach, California, with permission of the landowners.

Green is currently working on a separate study of monarch migration at a study site in U-M's Matthaei Botanical Gardens.
-end-
D. André Green

University of Michigan

Related Butterflies Articles:

Human handling stresses young monarch butterflies
People handle monarch butterflies. A lot. Every year thousands of monarch butterflies are caught, tagged and released during their fall migration by citizen scientists helping to track their movements.
What do soap bubbles and butterflies have in common?
A unique butterfly breeding experiment gave UC Berkeley researchers an opportunity to study the physical and genetic changes underlying the evolution of structural color, responsible for butterflies' iridescent purples, blues and greens.
Bacteria get free lunch with butterflies and dragonflies
Recent work from Deepa Agashe's group at NCBS has found that unlike other insects, neither butterflies nor dragonflies seem to have evolved strong mutualisms with their bacterial guests.
How some butterflies developed the ability to change their eyespot size
New insight on how a butterfly species developed the ability to adjust its wing eyespot size in response to temperature has been published today in eLife.
Butterflies can acquire new scent preferences and pass these on to their offspring
Two studies from the National University of Singapore demonstrate that insects can learn from their previous experiences and adjust their future behaviour for survival and reproduction.
Beating the heat in the living wings of butterflies
Columbia engineers and Harvard biologists discover that butterflies have specialized behaviors and wing scales to protect the living parts of their wings.
Scientists identify British butterflies most threatened by climate change
Many British butterflies and moths have been responding to warmer temperatures by emerging earlier in the year and for the first time scientists have identified why this is creating winners and losers among species.
Cities are key to saving monarch butterflies
Monarch butterflies are at risk of disappearing from most of the US, and to save them, we need to plant milkweed for them to lay their eggs on.
Butterflies are genetically wired to choose a mate that looks just like them
Male butterflies have genes which give them a sexual preference for a partner with a similar appearance to themselves, according to new research.
Butterflies thrive in grasslands surrounded by forest
For pollinating butterflies, it is more important to be close to forests than to agricultural fields, according to a study of 32,000 butterflies by researchers at Linköping University and the Swedish University of Agricultural Sciences in Uppsala.
More Butterflies News and Butterflies Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.