Nav: Home

Alzheimer's protein is likely held together with many weak chemical interactions

July 24, 2019

The chemical interactions that give proteins their shape may be weaker and more numerous than previously recognized. These weak connections provide a new way for researchers to understand proteins that cause disease and help them gain insights into the fundamentals of chemistry.

Chemists at the University of Tokyo modeled the building blocks of the protein structure that causes Alzheimer's disease, amyloid beta sheets. Their calculations revealed that some atoms too far apart to bond were still in each other's "electron neighborhoods."

"This is so strange. It's outside the common sense of organic chemistry," said Professor Tomohiko Ohwada from the University of Tokyo

Atoms - the building blocks of life represented in the periodic table of the elements - connect together to build molecules by sharing or stealing electrons from other atoms. Those electrons fly around super-fast in a cloud of electrons.

The traditional understanding of chemical bonds is that in large molecules, atoms must be side by side to share electrons.

Ohwada's research team calculated that atoms located far apart do not share electrons, but their electron clouds can still influence each other. They call this influence "through-space bond path interactions." The through-space bond path interactions are extremely weak, but common enough to add up to a potentially significant influence on the overall structure of large molecules.

"We studied the amyloid beta structure because everyone knows it can cause disease, but nobody really knows how the problematic structure develops," said Ohwada.

Abnormal accumulation of amyloid beta sheets may cause Alzheimer's disease or cancers.

The beta sheet structure refers to long chains of protein folded at regular intervals and stacked one on top of another into a flat sheet. Through-space bond path interactions within and between the protein chains likely stabilize the structure and may help it clump together into disease-causing plaques.

Recognizing the location and nature of through-space bond path interactions may help researchers predict the true structure and behavior of a molecule based only on its chemical sequence.

The research team has so far only studied through-space bond path interactions in the water-repelling portions of synthetically built mini amyloid beta sheets. They plan to expand their computations to the water-attracting portions and to larger molecules.

"In theory, it might be possible to build an artificial molecule that could form through-space bond path interactions with natural proteins and change their activity," said Ohwada.

The computations in this research were performed at the Research Center for Computational Science in Okazaki, Japan.
-end-
Research Article

Luhan Zhai, Yuko Otani, and Tomohiko Ohwada. 24 July 2019. Uncovering the Networks of Topological Neighborhoods inβ-Strand and Amyloid β-Sheet Structures. Scientific Reports. DOI: 10.1038/s41598-019-47151-2

https://doi.org/10.1038/s41598-019-47151-2

Related Links

Laboratory of Organic and Medicinal Chemistry: http://www.f.u-tokyo.ac.jp/~yakka/english/index.html

Graduate School of Pharmaceutical Sciences: http://www.f.u-tokyo.ac.jp/en/

Research contact

Professor Tomohiko Ohwada
Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033, JAPAN
Tel: +81-(0)3-5841-4730
Email: ohwada@mol.f.u-tokyo.ac.jp

Press Contact

Ms. Caitlin Devor
Division for Strategic Public Relations, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, JAPAN
Tel: +81-3-5841-0876
Email: press-releases.adm@gs.mail.u-tokyo.ac.jp

About the University of Tokyo

The University of Tokyo is Japan's leading university and one of the world's top research universities. The vast research output of some 6,000 researchers is published in the world's top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 2,000 international students. Find out more at http://www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

University of Tokyo

Related Electrons Articles:

Hot electrons harvested without tricks
Semiconductors convert energy from photons into an electron current. However, some photons carry too much energy for the material to absorb.
Cooling nanotube resonators with electrons
In a study in Nature Physics, ICFO researchers report on a technique that uses electron transport to cool a nanomechanical resonator near the quantum regime.
New method for detecting quantum states of electrons
Researchers in the Quantum Dynamics Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) devised a new method -- called image charge detection -- to detect electrons' transitions to quantum states.
Slow electrons to combat cancer
Slow electons can be used to destroy cancer cells - but how exactly this happens has not been well understood.
How light steers electrons in metals
Researchers in the Department of Physics of ETH Zurich have measured how electrons in so-called transition metals get redistributed within a fraction of an optical oscillation cycle.
Twisting whirlpools of electrons
Using a novel approach, EPFL physicists have been able to create ultrafast electron vortex beams, with significant implications for fundamental physics, quantum computing, future data-storage and even certain medical treatments.
Inner electrons behave differently in aromatic hydrocarbons
In an international research collaboration between Tsinghua University in Beijing and Sorbonne University in Paris, scientists found that four hydrocarbon molecules, known for their internal ring structure, have a lower threshold for the release of excess energy than molecules without a similar ring structure, because one of their electrons decays from a higher to a lower energy level, a phenomenon called the Auger effect.
Exotic spiraling electrons discovered by physicists
Rutgers and other physicists have discovered an exotic form of electrons that spin like planets and could lead to advances in lighting, solar cells, lasers and electronic displays.
Racing electrons under control
The advantage is that electromagnetic light waves oscillate at petaherz frequency.
Electrons go with the flow
You turn on a switch and the light switches on because electricity 'flows'.
More Electrons News and Electrons Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab